
  

1 Introduction 
In practical applications of text classification, 
we frequently face a computational difficulties 
caused by huge data.  Suppose that we need to 
classify millions of documents into tens of 
thousands of classes. We need to train tens of 
thousands of models based on millions of data 
samples when we take the one-against-the-rest 
binary classification approach.  Not only 
training but also classification (i.e., test) phase 
also becomes computationally challenging due 
to the overwhelming number of  models.  

NLM-NIH’s MeSH (Medical Subject 
Headings) is a standard medical thesaurus that 
consists of more than 110,000 biomedical 
categories.  MeSH has been used to classify 
more than 18 million biomedical literature.  In 
this respect, when we need to classify 
biomedical documents into MeSH categories, it 
is inevitable to consider some kinds of effective 
accelerations in the training and classification 
phrases in the ML-based text classification.  In 
this study, as the first step, we focus on 
acceleration of the classification phase. 

Recently, GPGPUs (General-Purpose 
Graphics Processing Units) have been attracting 
strong attention in the massively-parallel 
computation field. Originally, GPUs were 
developed for image processing. Now, GPUs 
have been extended to be capable of general-
purpose computations.  

In this study, we target GPGPU-based 
accelerations of SVM document classification.  
Target data are produced from clinical trial 
protocols with 11,443 distinct MeSH categories. 
In this study, only 63 top-level categories were 
considered. 

 
2. Overview of GPGPU  
We adopt NVIDIA's Tesla C2050 GPGPUs and 
a software development environment, NVIDIA's 
CUDA (Compute Unified Device Architecture). 
Figure 1 shows the architecture of GPGPUs. 
There are many Streaming Multiprocessors 
(SMs) inside of a GPGPU. Among them, there 
are the smallest processing units called CUDA 
cores. The number of cores is different GPGPU 
to GPGPU. Tesla C2050 incorporates with 32 
cores for each of the 14 SMs, which can operate 
the total of 448 cores in parallel. The CUDA 
core clock itself is 1.47GHz, which is slower 
than state-of-the-art CPUs. 

A GPGPU processor can handle the larger 
number of threads than the total number of its 
cores. Tesla C2050 can process up to 1024 
threads simultaneously. The thread has been 
managed in a hierarchy where a grid is on the 
top of the hierarchy. The grid consists of blocks 
and the block is comprised with threads. The 
shared memory is allocated to each block. Tesla 
C2050’s shared memory capacity is as small as 

Figure 1  GPGPU architecture 
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48 KB and it can be accessed for fast sharing 
data among threads in the same block. Access 
speed can be expected to be faster by utilizing 
GPGPUs. 
 Each thread is managed in the execution unit 

called warp. In CUDA, 32 warps are allowed for 
a thread. When a branch occurs, it slowdowns 
according to the number of warps. So, it is 
necessary to avoid divergent branches. 
 
3. CTP corpus 
3.1 Overview 

We have created the Clinical Trial Protocol 
(CTP) corpus. [1]  The overview of the corpus is 
as follows: 
 
� # docs: 82,525 
� Corpus size: 529 MB 
� Ave. doc size: 6.4 KB 
� # distinct MeSH categories: 11,443 
� # top-level distinct categories: 63 
� Ave. # categories/doc: 25.9 
� Ave. # top-level categories/doc: 3.4 

 
The corpus has been constructed in the 

following steps: 
 

1. Downloaded all the clinical trial protocols in 
HTML from the clinicaltrials.gov (as of Dec. 
11, 2009).a 

2. At the same time, the MeSH category list for 
each protocol was downloaded in HTML.  

3. The downloaded protocols and MeSH 
categories are combined into XML files. 
 
Unfortunately, there are no common 

agreements in the format of clinical trial 
protocols. Therefore, we extracted unigram 
features form the following sections, regarding 
them  as essential items in the clinical protocol.  
 
• NCT ID:  ID 
• Brief Title: general title 
• Official title: technical title 

                                                           
a  The site supports the XML format for 

downloading clinical trial protocols. However,  
sentences are segmented in the middle of the 
sentences by the line break in the XML. HTML 
pages do not include such a problem. 

• Brief summary (Purpose): overview of the 
clinical trial 

• Detailed description: detailed description of 
the clinical trial. 

• Additional relevant MeSH terms: MeSH 
category list 

 
3.2 MeSH Category 

This section describes an overview of MeSH 
category. MeSH is a standard biomedical 
thesaurus defined by the National Library of 
Medicine at the National Institutes of Health. A 
unique MeSH Tree Number. is assigned to each 
MeSH category. The MeSH Tree Number 
represents a path from the root category to the 
category. For example, Human Influenza 
(C02.782.620.365) is categorized in the 
following path.  

 
- Virus Diseases [C02] 

- RNA Virus Infections [C02.782] 
- Orthomyxoviridae Infections 

[C02.782.620] 
- Influenza, Human [C02.782.620.365] 

 
Clinical trial protocols in clinicaltrials.gov are 

associated with MeSH categories in a 
inconsistent manner.  Some include redundant 
categories, i.e., middle and leaf nodes in a path. 
Therefore, in this corpus, we expanded all the 
intermediate MeSH categories based on MeSH 
Tree Numbers. 
 
4. SVM classification using GPGPUs  
4.1 Dot product with the sparse index 

Traditionally, sparse vector representation [2] is 
used to efficiently compute the dot product of 
sparse vectors.  However, its sequential 
computation of the dot product is not suitable 
for parallelization. Then, we took a new 
approach called the sparse index approach [3].   

In classification of a text, typically a weight 
vector is not sparse. Only an input vector is 
sparse.  Therefore, we represent an input vector 
in the sparse vector format and the weight 
vector as a normal vector.  This means that the 
sparse vector works as an index to retrieve 
elements in the normal weight vector.  This 
drastically reduces the number of iterations that 
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needs to compute a dot product. That is, the 
number of loop is limited to the number of 
elements in a sparse vector. 
Moreover, the sparse index can be processed in 

parallel (details are described in the following 
section). 
 
4.2 Feature vectors 

In this study, we use feature vectors created 
from the CTP corpus. The number of documents 
to be classified is 8,252. The SVM classification 
model is generated from the rest of the data 
from the CTP corpus. Feature values represent 
the presence or absence of a word occurrence. 
The value is 0 if it is absent and 1 if appears.  

Instead of directly computing the dot product, 
we can compute the sum of the weight vector 
elements whose corresponding feature value in a 
given input vector is 1.  

As we use a linear kernel SVM, computing 
the dot product of feature vectors and weight 
vectors is the point that must be accelerated. In 
this study, to parallelize the computation of the 
dot product between the weight vector and input 
feature vector, the input vector is represented in 
the sparse vector and the weight vectors in a 
normal vector as described in the previous 
section.  
 

4.3 Parallel implementation  

The dot product calculation parallelism is 
employed using 128 threads. The dimensionality 
of the input vector is up to 11,496. The block 

diagram of a sample execution is shown in 
Figure 2. Due to space limitations, Figure 2 
shows a parallel reduction using four threads but 
it can be scaled up to 128 threads. First, the 
weight vector elements corresponding to the 
input sparse vector index are copied from the 
GPGPU global memory to the shared memory 
with 128 parallelisms (Fig. 2, Step 1). Then, the 
parallel computation of the dot product is done 
using 128 threads (Fig. 2, Step 2). Then we 
calculate the sum of the elements locally copied 
from the weight vector using 128 threads in a 
tree format (Fig.2 Steps 3, 4) using a reduction 
method[1]. A weight vector may be less than the 
dimensionality of 128. In that case, 0s are filled 
with so as to avoid warp divergence caused by 
branching.  

We also calculate the dot product with 63 
category parallelisms for a single feature vector 
that is to calculate the dot product of an input 
vector and each of the 63 weight vectors at a 
time (corresponding to the number of 
categories). The overhead would still exist in 
data transfer in every DMA. Using the data 
parallelism, the optimization of data transfer 
can be achieved using the 63*1000 block for the 
dot products of 1000 feature vectors and 63 
weight vectors at once, logically (Figure 3). 

 
 

5. Experimental results  
Table 1 shows the results. Thanks to data and 
dot product calculation parallelization, Table 1 
(d) becomes 40 times faster in the speed of 
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Figure 2  Parallel processing of a dot product 
computation 

Figure 3  Category and data parallelization 
for a dot product computation 
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classification, compared to Table 1 (b).  
Figure 4 shows the processing time along 

with the number of categories. The category, 
data, and dot product parallel approach to SVM 
classification (d) is much faster than other 
methods, especially when the number of 
categories is large enough. As the number of 
categories increases, there is no significant 
change in processing time unless they have 
enough memory and cores.  

 
6. Conclusions  
In this study, we successfully accelerated the 
SVM document classification with a GPGPU. 
Based on the sparse index method, category, dot 
product calculation, and data parallelisms are 
the most effect way to accelerate SVM 

classification. Parallelize the SVM training 
phase using GPGPUs is our future work. 
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Figure 4  The number of categories vs. classification time 
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Table 1   Experimental results 
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