

1 Introduction
In practical applications of text classification,
we frequently face a computational difficulties
caused by huge data. Suppose that we need to
classify millions of documents into tens of
thousands of classes. We need to train tens of
thousands of models based on millions of data
samples when we take the one-against-the-rest
binary classification approach. Not only
training but also classification (i.e., test) phase
also becomes computationally challenging due
to the overwhelming number of models.

NLM-NIH’s MeSH (Medical Subject
Headings) is a standard medical thesaurus that
consists of more than 110,000 biomedical
categories. MeSH has been used to classify
more than 18 million biomedical literature. In
this respect, when we need to classify
biomedical documents into MeSH categories, it
is inevitable to consider some kinds of effective
accelerations in the training and classification
phrases in the ML-based text classification. In
this study, as the first step, we focus on
acceleration of the classification phase.

Recently, GPGPUs (General-Purpose
Graphics Processing Units) have been attracting
strong attention in the massively-parallel
computation field. Originally, GPUs were
developed for image processing. Now, GPUs
have been extended to be capable of general-
purpose computations.

In this study, we target GPGPU-based
accelerations of SVM document classification.
Target data are produced from clinical trial
protocols with 11,443 distinct MeSH categories.
In this study, only 63 top-level categories were
considered.

2. Overview of GPGPU
We adopt NVIDIA's Tesla C2050 GPGPUs and
a software development environment, NVIDIA's
CUDA (Compute Unified Device Architecture).
Figure 1 shows the architecture of GPGPUs.
There are many Streaming Multiprocessors
(SMs) inside of a GPGPU. Among them, there
are the smallest processing units called CUDA
cores. The number of cores is different GPGPU
to GPGPU. Tesla C2050 incorporates with 32
cores for each of the 14 SMs, which can operate
the total of 448 cores in parallel. The CUDA
core clock itself is 1.47GHz, which is slower
than state-of-the-art CPUs.

A GPGPU processor can handle the larger
number of threads than the total number of its
cores. Tesla C2050 can process up to 1024
threads simultaneously. The thread has been
managed in a hierarchy where a grid is on the
top of the hierarchy. The grid consists of blocks
and the block is comprised with threads. The
shared memory is allocated to each block. Tesla
C2050’s shared memory capacity is as small as

Figure 1 GPGPU architecture

言語処理学会 第18回年次大会 発表論文集 (2012年3月)
￣￣￣ ̄

― 513 ― Copyright(C) 2012 The Association for Natural Language Processing.
All Rights Reserved 　　　　　 　　 　　　 　　　　　　　　　　

48 KB and it can be accessed for fast sharing
data among threads in the same block. Access
speed can be expected to be faster by utilizing
GPGPUs.
 Each thread is managed in the execution unit

called warp. In CUDA, 32 warps are allowed for
a thread. When a branch occurs, it slowdowns
according to the number of warps. So, it is
necessary to avoid divergent branches.

3. CTP corpus
3.1 Overview

We have created the Clinical Trial Protocol
(CTP) corpus. [1] The overview of the corpus is
as follows:

� # docs: 82,525
� Corpus size: 529 MB
� Ave. doc size: 6.4 KB
� # distinct MeSH categories: 11,443
� # top-level distinct categories: 63
� Ave. # categories/doc: 25.9
� Ave. # top-level categories/doc: 3.4

The corpus has been constructed in the

following steps:

1. Downloaded all the clinical trial protocols in
HTML from the clinicaltrials.gov (as of Dec.
11, 2009).a

2. At the same time, the MeSH category list for
each protocol was downloaded in HTML.

3. The downloaded protocols and MeSH
categories are combined into XML files.

Unfortunately, there are no common

agreements in the format of clinical trial
protocols. Therefore, we extracted unigram
features form the following sections, regarding
them as essential items in the clinical protocol.

• NCT ID: ID
• Brief Title: general title
• Official title: technical title

a The site supports the XML format for

downloading clinical trial protocols. However,
sentences are segmented in the middle of the
sentences by the line break in the XML. HTML
pages do not include such a problem.

• Brief summary (Purpose): overview of the
clinical trial

• Detailed description: detailed description of
the clinical trial.

• Additional relevant MeSH terms: MeSH
category list

3.2 MeSH Category

This section describes an overview of MeSH
category. MeSH is a standard biomedical
thesaurus defined by the National Library of
Medicine at the National Institutes of Health. A
unique MeSH Tree Number. is assigned to each
MeSH category. The MeSH Tree Number
represents a path from the root category to the
category. For example, Human Influenza
(C02.782.620.365) is categorized in the
following path.

- Virus Diseases [C02]

- RNA Virus Infections [C02.782]
- Orthomyxoviridae Infections

[C02.782.620]
- Influenza, Human [C02.782.620.365]

Clinical trial protocols in clinicaltrials.gov are

associated with MeSH categories in a
inconsistent manner. Some include redundant
categories, i.e., middle and leaf nodes in a path.
Therefore, in this corpus, we expanded all the
intermediate MeSH categories based on MeSH
Tree Numbers.

4. SVM classification using GPGPUs
4.1 Dot product with the sparse index

Traditionally, sparse vector representation [2] is
used to efficiently compute the dot product of
sparse vectors. However, its sequential
computation of the dot product is not suitable
for parallelization. Then, we took a new
approach called the sparse index approach [3].

In classification of a text, typically a weight
vector is not sparse. Only an input vector is
sparse. Therefore, we represent an input vector
in the sparse vector format and the weight
vector as a normal vector. This means that the
sparse vector works as an index to retrieve
elements in the normal weight vector. This
drastically reduces the number of iterations that

― 514 ― Copyright(C) 2012 The Association for Natural Language Processing.
All Rights Reserved 　　　　　 　　 　　　 　　　　　　　　　　

needs to compute a dot product. That is, the
number of loop is limited to the number of
elements in a sparse vector.
Moreover, the sparse index can be processed in

parallel (details are described in the following
section).

4.2 Feature vectors

In this study, we use feature vectors created
from the CTP corpus. The number of documents
to be classified is 8,252. The SVM classification
model is generated from the rest of the data
from the CTP corpus. Feature values represent
the presence or absence of a word occurrence.
The value is 0 if it is absent and 1 if appears.

Instead of directly computing the dot product,
we can compute the sum of the weight vector
elements whose corresponding feature value in a
given input vector is 1.

As we use a linear kernel SVM, computing
the dot product of feature vectors and weight
vectors is the point that must be accelerated. In
this study, to parallelize the computation of the
dot product between the weight vector and input
feature vector, the input vector is represented in
the sparse vector and the weight vectors in a
normal vector as described in the previous
section.

4.3 Parallel implementation

The dot product calculation parallelism is
employed using 128 threads. The dimensionality
of the input vector is up to 11,496. The block

diagram of a sample execution is shown in
Figure 2. Due to space limitations, Figure 2
shows a parallel reduction using four threads but
it can be scaled up to 128 threads. First, the
weight vector elements corresponding to the
input sparse vector index are copied from the
GPGPU global memory to the shared memory
with 128 parallelisms (Fig. 2, Step 1). Then, the
parallel computation of the dot product is done
using 128 threads (Fig. 2, Step 2). Then we
calculate the sum of the elements locally copied
from the weight vector using 128 threads in a
tree format (Fig.2 Steps 3, 4) using a reduction
method[1]. A weight vector may be less than the
dimensionality of 128. In that case, 0s are filled
with so as to avoid warp divergence caused by
branching.

We also calculate the dot product with 63
category parallelisms for a single feature vector
that is to calculate the dot product of an input
vector and each of the 63 weight vectors at a
time (corresponding to the number of
categories). The overhead would still exist in
data transfer in every DMA. Using the data
parallelism, the optimization of data transfer
can be achieved using the 63*1000 block for the
dot products of 1000 feature vectors and 63
weight vectors at once, logically (Figure 3).

5. Experimental results
Table 1 shows the results. Thanks to data and
dot product calculation parallelization, Table 1
(d) becomes 40 times faster in the speed of

xn
1 xn

2 xn
3 xn

4 xn
5 xn

6 xn
7 xn

8

Wm
1 Wm

2 Wm
3 Wm

4 Wm
5 Wm

6 Wm
7 Wm

8 Wm
9 Wm

10

weight vectors w

feature vectors x

DEVICEHOST

63*1000block

9

9
63

1000

128thread

7252

Figure 2 Parallel processing of a dot product
computation

Figure 3 Category and data parallelization
for a dot product computation

― 515 ― Copyright(C) 2012 The Association for Natural Language Processing.
All Rights Reserved 　　　　　 　　 　　　 　　　　　　　　　　

classification, compared to Table 1 (b).
Figure 4 shows the processing time along

with the number of categories. The category,
data, and dot product parallel approach to SVM
classification (d) is much faster than other
methods, especially when the number of
categories is large enough. As the number of
categories increases, there is no significant
change in processing time unless they have
enough memory and cores.

6. Conclusions
In this study, we successfully accelerated the
SVM document classification with a GPGPU.
Based on the sparse index method, category, dot
product calculation, and data parallelisms are
the most effect way to accelerate SVM

classification. Parallelize the SVM training
phase using GPGPUs is our future work.

References

[1] NVIDIA Corporation Optimizing Parallel
Reduction in CUDA, 2008.
(http://developer.download.nvidia.com/compute/cu
da/1_1/Website/projects/reduction/doc/reduction.p
df)
[2] John C. Platt: Sequential Minimal
Optimization: A Fast Algorithm for Training
Support Vector Machines, Technical Report MSR-
TR-98-14, 1998.
[3] Yutaka Sasaki, Massively Parallel Computing
with GPGPUs for Text Classification: A Case
study, Proc. of the Annual Meeting of Association
for Natural Language Processing, 2011.

Figure 4 The number of categories vs. classification time

(sec)

Table 1 Experimental results

― 516 ― Copyright(C) 2012 The Association for Natural Language Processing.
All Rights Reserved 　　　　　 　　 　　　 　　　　　　　　　　

