
Mining Web-scale Treebanks

Stijn De Saeger Kentaro Torisawa Jun’ichi Kazama

Language Infrastructure Group, MASTAR Project,
National Institute of Information and Communications Technology

{stijn,torisawa,kazama}@nict.go.jp

Abstract
Empirical linguistic research presupposes the availabil-
ity of large collections of syntactically annotated natu-
ral language text. When such data collections grow to
terabyte size, investigating specific linguistic phenomena
or harvesting lexico-syntactic patterns using simple tools
quickly becomes unmanageable, and specialized methods
for handling large tree data become necessary. Instead of
reporting on specific research results this paper will intro-
duce and compare a number of existing tools that can be
used to mine Web-scale Japanese treebanks. Facing data
sets of these dimensions, we found that an information re-
trieval tool with some knowledge of XML worked better
for us than highly specialized tree mining tools.

1 Why Size Matters
Knowledge acquisition algorithms crucially depend on
the availability of large collections of natural language
text for harvesting instances of lexico-syntactic construc-
tions that are indicative of some semantic phenomenon of
interest. Exploiting such linguistic clues to automatically
discover semantic relations in unstructured text was pio-
neered by Hearst ([4]) and has since given rise to the field
of relation extraction in NLP.

The power law distribution of word occurrences known
as Zipf’s law is particularly important in the context of
knowledge acquisition and relation extraction. To appre-
ciate the effect of corpus scale we performed a number
of experiments with drastically reduced data sets. Fig-
ure (a) shows how precision and recall figures for some
earlier knowledge acquisition experiments (see De Saeger
et al., [3]) change when scaling our Web corpus (see be-

low) down to the proportions of the average news articles
archive (i.e. around 1.6 million sentences, or 0.1% of the
original corpus). While precision seems to remain largely
constant, the recall graphs are heavily affected by the data
reduction. This is especially the case for the “Object-
Trouble relation acquisition: Recall” graph, which shows
the coverage of what we defined in [3] as a semantic re-
lation between objects or artifacts and potential problems
associated with their use. It clearly demonstrates the long
tail of rare but relevant relation instances that can only be
acquired given a sufficiently large corpus of text.

2 A Web-scale Treebank
NLP researchers usually try to tap the vast seas of infor-
mation on the Web by submitting queries such as “to-
bacco * * * * * cancer” to a commercial search engine
in order to retrieve text snippets containing the words “to-
bacco” and “cancer” in a 5 word window. This approach
has a number of drawbacks. First, search engines tend to
limit programmatic access to their indices to a fixed num-
ber of queries per day. Second, the number of returned
results is often limited as well, and the mechanism behind
their ranking is unclear. Finally, using results from string-
based queries means that one has to work with bare word
sequences as data. While in theory one could do syntac-
tic analysis after retrieving the patterns, the text snippets
returned by search engines typically don’t preserve sen-
tence boundaries, making this option difficult in practice.
Often though, syntactic dependency information presents
stronger evidence for the existence of a particular seman-
tic relation than mere co-occurrence in the same n word
window.

To help address some of these problems, the TSUB-

������ �������� ��������������

－ 837 －

(a) Knowledge acquisition precision and recall as a func-
tion of data scale.

(b) TSUBAKI’s web standard format.

AKI search engine1 ([6]) provides unrestricted program-
matic access to a collection of 100 million Japanese Web
pages containing 6×109 sentences (1.6×109 unique), or
3.1TB worth of gzip compressed data. The crawled Web
pages have been preprocessed, including sentence bound-
ary detection, morphological analysis with JUMAN2 and
dependency parsing using KNP3. The usual work flow is
that users submit a query to the TSUBAKI search engine
API as an HTTP request, and get an XML document in
response containing basic statistics like hit counts, text
snippets and a list of document IDs of relevant web pages.
These preprocessed pages (an example of which is shown
in Figure (b)) can then be retrieved by ID.

While obviously a great improvement over closed com-
mercial search engines, for the specific task of mining
lexico-syntactic patterns this process is still not as effi-
cient as could be, and reconstructing the relevant syntac-
tic constructions from the KNP output in the XML docu-
ments still requires a fair amount of programming on the
part of the user. Moreover, for large data such naive pat-
tern extraction method rapidly exceeds the limits of what
can be achieved in any reasonable amount of time, and the
challenges implied by Web-scale data mining require the
use of specialized tools and architectures. For this reason
we have compiled the TSUBAKI corpus into a large, dis-
tributed treebank which can be mined using specialized
tools. In section 3 we discuss the treebank’s specifics.

1 http://tsubaki.ixnlp.nii.ac.jp/index.cgi
2 http://www-lab25.kuee.kyoto-u.ac.jp/nl-resource/juman-e.html
3 http://www-lab25.kuee.kyoto-u.ac.jp/nl-resource/knp-e.html

Section 4 introduces some tools we used for mining pat-
terns, and section 5 concludes.

3 Treebank Format
We converted the TSUBAKI document collection from
Web standard format (Figure (b)) to the Penn treebank
format. Processing was done in parallel on 28 cluster
nodes of the “New IT infrastructure for the Information-
explosion Era” 4 research project’s InTrigger platform.

The KNP dependency parsed sentences were mapped
to trees as follows. The content of a terminal tree node
consists of a word, and its JUMAN stem and polarity, sep-
arated by colons. Polarity and stem only matter for verbs
and adjectives and is often just ignored. Tree node labels
are composed of a major label and a minor label corre-
sponding to the node’s POS and sub-POS, separated by
a hyphen. For example, JUMAN POS “名詞” and sub-
POS “サ変名詞” become a tree node with label “N-sa”.
The label of a bunsetsu’s last terminal node that is a con-
tent word gets passed up the tree to make phrases. As
node labels get indexed by the tree mining tools it pays to
include as much useful information in the labels as pos-
sible. Therefore we inserted the following additional in-
formation in the label of non-terminal nodes — the KNP
dependency kind (D, P or A), the main verb’s polarity in
the case of VPs (1 or 0) and some basic case information

4 http://www.infoplosion.nii.ac.jp/info-plosion/ctr.php/m/IndexEng/
a/Index/

－ 838 －

for NPs (the phrasal head’s post-position). An example
tree is shown below.

(VP-1:D
(NP-ni:D
(N-sa 旅行:旅行:1)
(PP-kaku に:に:1))

(V-* 行って:行く:1)
(SUFF-verb きた:くる:1)
(PUN-period 。:。:1))

After construction the tree data remained distributed
over the 28 cluster nodes, with about 15 GB worth of gzip
compressed trees per node.

4 Tree Mining Tools
In this section we introduce three tools for mining the
treebank introduced above: TGrep2, Tregex and Wumpus.
All three are licensed under the GNU General Public Li-
cense (GPL), which makes their usage free for research
purposes. Throughout the last year we have used them ex-
tensively for extracting lexico-syntactic patterns from the
TSUBAKI tree data, yet as we will see they each represent
a different compromise in the trade-off between query ex-
pressivity and scalability.

We wish to stress that this is not meant to be an exhaus-
tive overview of all possible tools available for this task,
nor to imply that these are necessarily the most appropri-
ate for the job. Also, query execution timings reported
below should be interpreted as rough approximations, as
our benchmarks could not control for parameters like sys-
tem load on a multi-user cluster.

TGrep2 TGrep2 5 aims to be a grep for trees, yet it of-
fers much more functionality than that. It accepts data
in the Penn Treebank format and has a sophisticated tree
expression language that allows one to assert complex
Boolean, dependency and precedence relationships be-
tween tree nodes, use regular expressions and even name
nodes to create back-references inside a tree expression.
A full treatment of TGrep2’s tree expression grammar is
beyond the scope of this paper, but to give an example the
query below can be used to retrieve all instances of verbs
occurring in a VP that dominates an NP marked with post-
position “で” and either a noun “スプーン” or “ナイフ”.

5 http://tedlab.mit.edu/˜dr/TGrep2/

/ˆV-/ > (/ˆVP/ < (/ˆNP/ < (/ˆPP/ < /で/) [<

(/ˆN/ < /スプーン/) | < (/ˆN/ < /ナイフ/)]))

TGrep2 first needs to build a binary corpus file which
doubles as an index. One of TGrep2’s greatest strengths
is that while these corpus files contain a full copy of the
data they can be gzip compressed with little effect on ex-
traction performance (decompression cost is offset by re-
duced disk IO). On each of the data nodes our TGrep2 cor-
pus weighs in at around 13GB, which is impressive con-
sidering the compressed tree data is already about 15GB.
This makes TGrep2 by far the most scalable of the three
in terms of space. Building the corpus files took several
days. Query execution time is highly variable, ranging
from minutes to hours. Running the example query above
on one node took about 16m45.41s.

However, we found some cases where the tree expres-
sion engine’s behaviour deviates from the documentation.
For instance, in some cases the relation “(A $.. B)”
(meaning A is a sister of and precedes B) does not look
beyond its immediate right sister. Ultimately this is what
prompted us to investigate alternatives.

Tregex Tregex6 was developed at the Stanford Natural
Language Processing Group. It is written in Java and
comes with a GUI program that helps the user construct
tree patterns on a set of in-memory trees. Tregex’s tree
pattern language extends TGrep2’s expressiveness with
(i) constrained dominance and precedence relations be-
tween nodes, (ii) headship as a primitive relation7, and
(iii) variable groups for co-indexation relations. Its pat-
tern language is effectively a strict superset of TGrep2’s.
This makes it relatively painless to switch from TGrep2
to Tregex. An added benefit is that Tregex comes with
a tree transformation tool called “Tsurgeon” which takes
Tregex tree patterns to move, prune, replace, adjoin or in
other ways transform a matching node (Levy et al., [5]).

For our purposes the most substantial demerit is that
Tregex does not preindex the trees — it needs to load each
data file into memory. This rules it out as a stand-alone
mining tool for Web-scale treebanks, but it may still have
its use as a post-processing tool. For instance, Tregex and
Tsurgeon may be utilized for pruning irrelevant subtrees
from a smaller set of trees, like the results of a TGrep2

6 http://nlp.stanford.edu/software/tregex.shtml
7 To be defined by the user. Tregex does come with headship rules

for the English, Chinese and Arabic Penn Treebanks, and the NEGRA
and TIGER treebanks for German (see [5]).

－ 839 －

query. Tregex is by far the most expressive query tool of
the three, but scalability issues prevented it from being the
final solution to our tree mining problem.

Wumpus Wumpus (Buettcher et al. [1]) was not con-
ceived as a tree mining tool per se. It was developed at the
University of Waterloo as a generic information retrieval
system. It boasts excellent performance in the TREC Ter-
abyte Track information retrieval competitions 8 and han-
dles text collections of several hundreds of gigabytes, and
millions of documents.

Wumpus features a simple but powerful query language
called GCL (“Generalized Concordance Lists”, based on
Clarke et al. [2]) that allows one to emulate tree expres-
sions to some extent. GCL queries return index extents
(integer intervals in the index address space that map to
a byte-offset in the original data file). Instead of depen-
dency relations, GCL defines a number of scope opera-
tors. A query (A > B) returns the shortest extent that
matches A and contains an extent matching B, while its in-
verse (A < B) returns extents that are contained in (the
shortest extent matching) B. The negations of these scope
operators are written “/>” and “/<”, and [n] finds all
extents of length n.

Combined with a structured text format like XML,
these scope operators allow one to emulate tree expres-
sions. For instance, the following query is the GCL equiv-
alent of our earlier example.9

("<V>" .. "</V>") < (("<VP>" .. "</VP>")

> (("<NP>" .. "</NP>") > (("ス プ ー ン" + "ナ イ
フ") ˆ (("<PP>" .. "</PP>") > "で"))))

The subtree corresponding to an extent can then be re-
trieved using the @get command. Furthermore, Wumpus
has commands for retrieving frequency counts for a query
and for ranked retrieval of documents based on Okapi
BM25, the vector space model, language modeling or di-
vergence from randomness.

For our experiments we converted the treebanks from
the Penn treebank format to their equivalent XML struc-
tures10, roughly giving 75GB of XML data per node. In-
dexing this data took around 12 hours and resulted in a
60GB index. Running the above query on a “cold” system

8 http://trec.nist.gov/
9 This is an approximation though, as “>” and “<” only emulate a

sort of dominance relation, not a direct parent-child dependency.
10 We did strip off minor labels from the XML tags to save space.

(no part of the index cached in memory) took 1m29.84s,
with subsequent queries running in around a minute (re-
trieval itself is instantaneous). A frequency count of all
occurrences on one node took 1m31.45s.

In summary, Wumpus offers fast indexing and excellent
scalability and retrieval performance, at the cost of some
reduced query expressivity when searching for complex
tree structures. In addition, the ability to get basic statis-
tics like co-occurrence frequencies from the search engine
is a great benefit for many NLP tasks. Combined with
the wide-spread availability of XML processing tools for
managing the data itself this makes it our current tool of
choice for mining large treebanks.

5 Conclusion
Each tool we discussed offers its own unique combination
of features — Tregex offers an expressive tree expression
language and with Tsurgeon the ability to perform com-
plex trees transformations. However, it does not bother
with the storage or indexing of tree data, which dimin-
ishes its usefulness for mining Web-scale treebanks. On
the other end of the spectrum is Wumpus, which offers
a complete solution for indexing and retrieval of large
data sets, at the expense of some reduced expressive-
ness when searching for complex tree patterns. Finally,
TGrep2 sits somewhere inbetween the other two in the
expressiveness/scalability trade-off.

References
[1] Stefan Buettcher and Charles L. A. Clarke. Efficiency vs. effective-

ness in terabyte-scale information retrieval. In Proceedings of the
14th Text REtrieval Conference (TREC 2005), Gaithersburg, MD,
2005.

[2] Charles L. A. Clarke, G. V. Cormack, and F. J. Burkowski. An
algebra for structured text search and a framework for its imple-
mentation. The Computer Journal, 38:43–56, 1995.

[3] Stijn De Saeger, Kentaro Torisawa, and Jun’ichi Kazama. Look-
ing for trouble. In Proc. of The 22nd International Conference on
Computational Linguistics (Coling2008), 2008.

[4] M. Hearst. Automatic acquisition of hyponyms from large text cor-
pora. In Proc. of COLING’92, pages 539–545, 1992.

[5] Roger Levy and Galen Andrew. Tregex and tsurgeon: tools for
querying and manipulating tree data structures. In Proceeding of
LREC 2006, 2006.

[6] Keiji Shinzato, Tomohide Shibata, Daisuke Kawahara, Chikara
Hashimoto, and Sadao Kurohashi. Tsubaki: An open search en-
gine infrastructure for developing new information access. In Proc.
of IJCNLP, pages 189–196, 2008.

－ 840 －

