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Abstract—Due to the coexistence of different compression 
algorithms in the fixed and mobile telephone networks, it is 
impossible to predict which combination of coders and 
channels the speech has undergone before arriving to the 
server. To overcome the previous mentioned problem, the 
European Telecommunication Standards Institute (ETSI) 
has standardized a front-end for Distributed Speech 
Recognition (DSR). But once again, the distortion added 
due to feature compression in the front-end side increases 
the variance flooring effect that increases the identification 
error rate. The penalty incurred in reducing the bitrate is 
degradation in speaker recognition performance. In this 
paper we present a non traditional solution for the previous 
mentioned problems. To reduce the bitrate, speech signal is 
segmented at client and the most effective phonemes for 
speaker recognition are selected to be sent to the server. 
Speaker recognition is occurred at server. Applying this 
approach on YOHO corpus, we could achieve 0.05% 
identification error rate (ER) using an average segment of 
20.4% of the testing utterance for recognition. This result 
outperforms previously published results on the speaker 
identification task from error rate (ER) point of view as 
well as the minimum speech segment required for speaker 
identification. 
 

I. INTRODUCTION 
A “client-server” system, where speech features are 

extracted at the client (device), then compressed and 
transmitted to a remote server hosting the speaker recognizer 
performs better than when encoded speech is used for speaker 
recognition. However there is some recognition degradation 
when compared to clean (uncompressed) feature vectors. 
Furthermore, due to the coexistence of different compression 
algorithms in the fixed and mobile telephone networks, it is 
impossible to predict which combination of coders and 
channels the speech has undergone before arriving to the server. 
The consequent mismatch between speech used in training the 
recognition system and speech to be recognized is another 
significant source of performance degradation [1]. To 
overcome the previous mentioned problems, the European 
Telecommunication Standards Institute (ETSI) has 
standardized a front-end for Distributed Speech Recognition 
(DSR) where speech feature is coded (compressed) in the 
mobile phone, transmitted over the cellular network, and 
recognition is performed in the server side by using the 
decoded speech feature [2]. But the distortion added due to 
feature compression in the front-end side is a drawback. This 

problem increases the variance flooring effect that increases the 
identification error rate when training GMM. Moreover (ETSI) 
standard is using a fixed feature parameter vector (MFCC (0-
12), log-power) for speech data which deprives researchers 
from using different feature parameter vectors. To overcome 
these problems, we propose a non traditional approach to 
reduce the bitrate for the transmitted utterance without feature 
compression and decrease the identification error rate as well. 
First we investigated the phoneme effect on speaker recognition 
system. We found that some phonemes have strong effect on 
speaker identification. By segmenting the most effective 
phonemes for speaker recognition task from a speaker utterance, 
we could decrease the system complexity and the recognition 
time. Moreover, this technique is very useful to speed up the 
authentication process through wire/wireless communication 
systems. This paper is concerned with improving the 
performance of speaker recognition systems in two areas: 
decreasing the identification error rate and decreasing the 
utterance part required for identification task. 
There are many research papers for speaker recognition using 
DSR approach based on different speech databases. Qin Jin, 
Alex Waibel used the naive de-lambing method based on NIST 
1999 Speaker Recognition database [3]. S. Grassi, M. Ansorge, 
F. Pellandini, P.-A. Farine used Gaussian Mixture Models 
(GMM) classifiers based on TIMIT database [1], where Chin-
Hung Sit, Man-Wai Mak, and Sun-Yuan Kung used SPIDRE 
corpus [4].In order to compare our results with previous works; 
it is convenient to have comparisons with the researches which 
used YOHO database. For example, D. Reynolds could achieve 
error rates as low as 0.7% using Gaussian mixture models 
(GMM’s) for speaker identification using YOHO corpus [5], 
while B.L. Pellom reported the same error rate with reduction 
of the time to identify a speaker by a factor of 140 [6]. All 
previous mentioned researches could not achieve as low error 
rate as required. Moreover these researches used all speaker 
utterance for speaker recognition task which increased the 
recognition time and increased the transmitted data in the case 
of wire/wireless communication systems.  
Some other researchers used different techniques for speaker 
recognition. Dominique Genoudy, used neural-network 
acoustic models of a hybrid connectionist-HMM speech 
recognizer to adapt a speaker-independent network by 
performing a small amount of additional training using data 
from the target speaker, giving an acoustic model specifically 
tuned to that speaker [7]. O. Thyes, used “eigenvoice” approach, 
in which client and test speaker models are confined to a low-
dimensional linear subspace obtained previously from a 
different set of training data. He reported 5% ER for 
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Eigenvoice dimension of 70 using YOHO database [8]. Wan, 
reported identification error rate of 4.5% using polynomial 
order of 10 for Support Vector Machines approach when 
applied on YOHO corpus [9]. Campbell, used Polynomial 
Classifiers for Text-Prompted Speaker Recognition. His best 
identification error rate was 0.38% using second order 
Polynomial Classifiers for YOHO database [10]. However the 
different techniques used for all previous mentioned researches, 
it is strongly required to achieve as low ER as possible and also 
decrease the required speaker utterance part for recognition. 
André G, segmented speech to 5 classes. Unvoiced segment 
class in addition of 4 different classes based on rising and 
falling of energy and fundamental frequency (f0) [11]. Alex 
Park, segmented speech to eight phonetic classes and used 
several approaches for speaker identification task based on 
YOHO corpus. His best identification error rate was 0.25% 
when he used multiple classifiers (phonetically structured 
GMM + speaker adaptive) [12]. However André G and Alex 
Park segmented the speech, they did not take the advantage of 
the whole effect of all phonemes in it. 
Although the goal of text independent speaker recognition has 
led to an increased focus on global speaker modeling, it is well 
known that some phones have better speaker distinguishing 
capabilities than others [13, and 14]. For instance, in [13] 
vowels and nasals were found to be most discriminating 
phoneme groups. Global speaker modeling techniques like the 
GMM approach are not able to take optimal advantage of the 
acoustic differences of diverse phonetic events. No doubt that 
taking the advantage of speech segmentation is enhancing the 
identification error rate as well as decreasing the required 
speech segments for speaker identification task. This advantage 
was not taken into account for the traditional speaker 
recognition models. 
   In this paper we investigate the phoneme effect on speaker 
recognition task. Our targets are:  
1- Decrease the required speech segment for speaker 
identification task to reduce the bitrate, decrease the system 
complexity and speed up the speaker identification process. 
2- Decrease the identification error rate.  
In order to achieve the above targets, we have investigated the 
speaker phonemes effect on the speaker identification task. 
Then we selected the most effective phonemes for speaker 
identification. Using this technique, we could reduce the bitrate 
and decrease the identification error rate as well. Our results 
outperform all previously published results on the speaker ID 
from the precision point of view as well as minimum speech 
segment required for identification process. 
  

II. 

III. 

IV. 

YOHO DATABASE 
The data consists of 138 speakers - 106 males and 32 

females recorded in a span of 3 months. To record the data, a 
high quality telephone handset was used. For each speaker, 
both training, also referred to as enrollment, and testing, or 
verification, sessions have been created. The enrollment 
sessions consist of four sessions each containing 24 utterances 
while the verification data has 10 sessions of 4 utterances each. 
Each speaker has the same training data set where testing data 
are different for each speaker. Each utterance consists of 
“combination lock” phrases which are each a set of three 
doublets of digits, for example “23-42-91” pronounced as 

“twenty three, forty two, ninety one”. The sampling rate for the 
speech files is 8 kHz, and the sample coding is 12-bit linear 
(stored as 16-bit words). The total number of pronounced 
phoneme types in YOHO database is 18 phoneme types. 
 

THE PROPOSED SYSTEM 
Figure 1 shows a block diagram of the processing stages for 

the proposed DSR system.  
At the terminal the speech signal is sampled and parameterized 
to construct feature vectors. These feature vectors are then 
segmented to phonemes using HMM speaker independent 
phoneme model that constructed by using all speakers training 
data. Then select the most effective phonemes for speaker 
recognition to obtain a lower data rate for transmission. 
Transmit these phonemes besides the associated label for each 
phone. Before transmission, frame structure & error protection 
occurred. Error detection & correction occurred at the server 
DSR back-end. Also server feature processing may occur at 
server to generate more features from the received feature 
vectors such as delta and acceleration coefficients. At the server 
side, we have phoneme based GMM speaker dependent model 
for each speaker for each phoneme. Using the label associated 
with each transmitted phoneme to direct the phoneme segment 
to the correct phoneme based GMM speaker dependent model 
for recognition. 
 

IMPLEMENTATION 
The system consists of the following modules: 
1- HMM speaker independent phoneme model constructed 

by using all speakers training data. This HMM phoneme 
model is used to segment each speaker training and 
testing utterances into phoneme segments. 

2-  Segmenting each testing data utterance to phoneme 
segments using the previous constructed HMM speaker 
independent phoneme model. Then using each speaker 
dependent GMM phoneme model to calculate the identification 
error rate as a function of each phoneme as in section sec. A. 
Taking the contribution of the testing utterance phonemes of 
the same type to calculate the identification error rate as a 
function of each phoneme as in section sec. B. Taking the 
contribution of some testing utterance phonemes to calculate 
the identification error rate as in sec. C.  
 
A.     Phonemes effect on speaker identification  

The probability density function for a feature vector zr  is a 
weighted sum, or mixture, of k class-conditional Gaussian 
distributions. For a given phone of a certain speaker, s , the 

probability of observing z
p

r
 is given by 
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Where n is the dimension of . We used ∑  a

covariance matrices. Given a set of training vectors o
phoneme of a certain speaker, an initial set of
estimated using the k-means clustering. The mixtur
means, and covariances are then iteratively trained
expectation maximization (EM) algorithm. After s
each speaker training utterance to phoneme segment
equation (1) to construct phoneme model for each s
each speaker utterance was represented as: (sil < ($p
[sp] < ($phonemes)> [sp] < ($phonemes)> sil
($phonemes) is some phoneme combination o
phonemes of YOHO database represented as: 

z

$phonemes = ah | ao |ay | eh |er | ey |f | ih | iy | k |n |
uw | v | w; 
Using this approach, we constructed speaker depend
for each phoneme except 2 phonemes which are (“r”
since the system failed to construct them for som
because the frequencies of these 2 phonemes are low
we used each phoneme model for each speaker to
separate speaker phoneme (obtained after segm
testing utterance using HMM speaker independen
model) for speaker identification task using 
likelihood of each phoneme. Table 1 illus
identification error rate for each speaker phoneme.  
From table 1, ER depends on phoneme type and the
of the phoneme in the training data. ER is
proportional to the phoneme frequency of the tra
since as the phoneme frequency increases the GM
based model accuracy increases too. ER is low in t
vowels and nasal phones. Vowels like “ih”, “uw”,
“ao” give good speaker identification results where
“iy” do not. Diphthong phones like “ay” and “ey” giv
results. It is common for speaker identification task t
the ER using the whole utterance. In the next sectio
the contribution of all phonemes of the same type fo
utterance to calculate the identification error rate. 
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Identification error rate using the contribution of 
utterance phonemes of the same type  
We conducted the above experiment, but we took the 

contribution of all phonemes of the same type in each utterance 
into account to calculate the ER. Table 2 illustrates the 
identification error rate for each speaker phoneme when taking 
all utterance phonemes of the same type into account.  
It is clear that the ER improved in general. The effect of testing 
data phoneme frequencies on speaker identification task is very 
strong as shown in table 2. In table 2, although phonemes “iy” 
has high frequency for training and testing data, it has the 
highest ER value, whereas the nasal phoneme “n” gives the 
best identification result. Once again nasal and vowels like “ih” 
give the best identification results and “ay”, ”ey” and ”iy” still 
give the worst identification results. 
 

The effect of combining phonemes on speaker 
identification  

In table 2, Phonemes “n” has the best speaker identification 
result then phoneme “ih” and so on. Taking the contributions of 
successive phonemes to calculate the speaker identification 
error rate must achieve better results than using each one alone. 
When we conducted the same experiment as above but we 
calculated ER using the contributions of phonemes “n” 
and ”ih”, the ER became 0.46%. Moreover the estimated 
average duration time of all “n” and “ih” segments in the whole 
YOHO testing database was as follows: 
 (“n” + “ih” segments duration time in all testing phrases)/ 
(total testing data time) = 8.8% 
Using the same approach for all remaining phonemes, we could 
achieve the results of table 3. 
It is very clear from table 3 that as taking the contributions of 
more phonemes, the identification error rate decreases until a 
certain phoneme combinations then it increases again. The best 
result is ER = 0.05% when using (n + ih + f + uw + ah + th) 
combination and the total required speech segment for 
recognition is 20.4013% of the whole testing utterance in the 
average. When adding the  



Table 1: Identification error rate using separate phone 
Phone ih uw ah ao 

ER 1.20% 1.50% 1.70% 2.50% 
Phone th f n k 

ER 2.60% 2.70% 4% 5.60% 
Phone eh v t s 

ER 6.20% 9% 14.80% 16.90% 
Phone w ay ey iy 

ER 18% 32% 49.40% 55.50% 
 

Table 2: Identification error rate using utterance phones of the same 
type 

Phone n ih f uw 
ER 0.90% 0.97% 1.30% 1.50% 

Phone ah th ao k 
ER 1.80% 2% 2.40% 4.80% 

Phone eh t v s 
ER 4.90% 5% 7.30% 12.60% 

Phone w ay ey iy 
ER 15% 31.80% 49.30% 55% 

 
Table 3: Identification error rate for phonemes combination 

& phonemes segment ratio 
Phone ER Seg. ratio

n  0.90% 5.888398%
n + ih  0.46% 8.809841%
n + ih + f  0.22% 13.36078%
n + ih + f + uw  0.14% 15.88506%
n + ih + f + uw + ah  0.14% 17.66334%
n + ih + f + uw + ah + th 0.05% 20.4013%
n + ih + f + uw + ah + th + ao  0.14% 23.96435%
n + ih + f + uw + ah + th + ao + k  0.13% 25.62414%
n + ih + f + uw + ah + th + ao + k + eh  0.09% 26.89874%
n + ih + f + uw + ah + th + ao + k + eh + t  0.07% 30.75527%
n + ih + f + uw + ah + th + ao + k + eh + t 
+ v  

0.11% 
34.03236%

n + ih + f + uw + ah + th + ao + k + eh + t 
+ v +s  

0.09% 
39.14136%

n + ih + f + uw + ah + th + ao + k + eh + t 
+ v +s + w  

0.09% 
40.73546%

n + ih + f + uw + ah + th + ao + k + eh + t 
+ v +s + w + ay  

0.37% 
45.27926%

n + ih + f + uw + ah + th + ao + k + eh + t 
+ v +s + w + ay + ey 

0.48% 
46.64604%

n + ih + f + uw + ah + th + ao + k + eh + t 
+ v +s + w + ay + ey + iy 

0.78% 
51.86819%

 
contributions of the phonemes that give bad identification value 
such as “ay”, ”ey” and ”iy”, the ER increases as shown in table 
3. Most of the results appear in table 3 outperform all previous 
published result from the identification error rate point of view 
as well as the minimum speech segment required for 
identification task. 

IIV. CONCLUSIONS 
In this paper we tried to reduce the bitrate using 

segmentation approach which avoided the previous mentioned 
problems. Our system is flexible, for example we can 
compromise the ER value with the required bitrate. For 

instance we can accept a low value of ER = 0.9% to send an 
average speech segment of 5.8% of the whole testing utterance. 
Also we may have to send an average speech segment of 20.4% 
of the whole testing utterance to achieve 0.05% identification 
error rate. 
In the future work we will investigate the rest phonemes effect 
on speaker recognition using other speech corpora. 
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