il

EAEFS ESEIFKRAR BRWE (20024£34)

Open distributed architecture for NLP systems using services
described in XML

Nicolas AUCLERC , Nick CAMPBELL & Yves LEPAGE
{nicolas.auclerc, nick.campbell, yves.lepage}@atr.co.jp

1 Introduction

Since the new formalization of analogy, the Aleph
group proposed a new open architecture based on
the notion of services. Services are software compo-
nents that communicate over a network. The ser-
vices we developed are mainly software services, so
resources used are not limited by external appliance
and can be distributed and reduplicated over the
network. Jini technology, which is built on Java, pro-
vides an open architecture for services. Thanks to a
generic helper class included in each service, services
can be defined and generated from an XML descrip-
tion. Blue Tongue, is an example implementation
of this open architecture. Two different research
groups collaborated for its realization: one in ma-
chine translation and one in expressive speech syn-
thesis. Blue Tongue brings together their research
results in one same demonstration. Thanks to the
web service, we hope to demonstrate Blue Tongue
with three kinds of interfaces (imode, IPaq, usual
Internet browser).

2 Background

Previous implementations of applications using anal-
ogy (Auclerc 01) were designed as client/server ap-
plications because they adopted the three steps
of second-generation machine translation systems:
analysis, followed by transfer, followed by genera-
tion. The translation model based on analogy re-
places them with several “threads” combining anal-
ogy verifications, correspondence, and resolutions of
analogical equations. Translation is realized along a
plurality of paths. Thus, it is not necessary for one
path to wait for another path to be finished until
it can starts. Consequently, the sequence analysis-
transfer-generation became obsolete, and as a conse-
quence, the client/server model was found to be no
more relevant. In its place, we now use a model of
software services, where requests for basic operations
are sent and answered through a general blackboard.

3 Services

In client/server applications, clients and servers are
different and have their own protocols. By contrast,

-232—-

in a service architecture, all clients and servers are
services with different functionalities, and they com-
municate through a network by using the same set
of libraries. Thank to these common libraries, a ser-
vice is able to see other services through the network.
A service has also the responsibility to manage its
own protocol for delivery service, and has to declare
its own attributes (description). As a consequence,
a client-service can use other services without any
foreknowledge of their implementation, nor where
they reside. A service can be freely cloned on a dif-
ferent computer (distribution) or on the same com-
puter (reduplication).

Services come with two different functional-
ities: a delivery functionality and an access func-
tionality to other services (client). Of course, a ser-
vice may be limited to one functionality. Thanks to
these two basic functionalities, we can create com-
plex service architectures like hierarchies of services
as well as stand-alone services.

Services come in two kinds: software services
and device services (drivers). Software services do
not depend on hardware resources like external ap-
pliances. This kind of services can be cloned on the
same computer or on a different computer. Unlike
software services, device services manage hardware
like modems, and cannot be easily cloned.

4 Our Open Service Architecture

Some current development environments offer tools
to easily create services. To be able to develop an
open architecture distributed over several comput-
ers, we have chosen the Jini network technology, a
Java technology, which offers a development plat-
form and supports C libraries. In our open archi-
tecture, we see a service as a generic software com-
ponent, with a generic definition (like IDL: interface
definition language). Thanks to this description, we
clone this service by instantiating it with parameters
(attributes here). We chose to write the description
and the parameters of a service in XML (see Fig-
ure 1).

<desor iption>

<copy>ATR 2002</copy>
</descr iption)

—\

service
description

*

<titiedTranshtiond/titie> *
Cupdated2002¢/uwdatey

! I

* <desor iption>
<titioottioe
situat lon</titie>
</duser iption>

 <duscristion>

<title>cotteeshop
situationd/titie>
</descript lon>

service
instantiation

runing -services
(clones)

<descript ion>

<titled>Spanch Synthesis/titie>
<update>2002¢/vpdate>
<eopy>ATR 2002</copy>

</deser Iption>

<desor Iption>
CEitleONTRUEIL IO
</desor Iption>

Figure 1: An open service architecture

4.1 Services as generic software
components

The Jini network technology consists of an infras-
tructure and programming model that address the
fundamental issues of how services discover and con-
nect to each other. However, it has some limita-
tions. To overcome these limitations, we developed
a generic helper class. This add-on managed all the
communications between services by using Jini com-
mon libraries and a distributed blackboard: JavaS-
paces. JavaSpaces is an example of service that runs
on the Jini network. By including this add-on in
each service, a C or a Java component that runs
as a service does not have to take care about Jini.
Hence, these helper classes enable software services
to be replicated or distributed by just cloning the bi-
nary. Also, as a consequence, client-services do not
know which clone performs its request. Thus, the
system has just to ensure that at least one clone of
a service always runs on the network. For that pur-
pose, we included a watchdog into our helper class.
It ensures that a clone will be always available on

the network.

4.2 Services describes in XML

In our open architecture, the XML description con-
tains three different sections. The service descrip-
tion begins with the name of the service, which is
unique.

The first section gives the common service at-
tributes, plus additional specific attributes. Each
of theses attributes can be redefined in the XML
description of service instantiations. The common
service attributes are shared by instantiations: title,
update and copyright. With the attribute title, we
specify the service functionality: for examples, in our
machine translation mock-up, the title of the trans-
lation service changes for each domain: at home, at
work, etc. (Figure 1). Additional service attributes
can be defined: for example, in a modem service,
a service attribute may specify the tone or impulse
mode to make a phone call (see Figure 2).

The second section describes the different ob-
Jjects with their fields, necessary for a request and to

—-233—

<description>
<title>Translation</title>
<update>2002</update>
<copyright>ATR 2002</copyright>
</description>
<service-description>
<Integer name='recursivity"/>

</service-description>

Figure 2: service attributes.

receive responses from the service (see Figure 3).

<declaration>
<enum name="Lang" type='"string">
<item name="JAPANESE">japanese</item>
<item name="ENGLISH">English</item>
</enum>
<message name="Totranslate'>
<class name="Source" enum="Lang'>

</class>

<class name='target" enum="Lang'>
</class>

<string name='sentence"></string>
</message>

<message name="TranslationResult'>
<string name="translation'></string>
</message>

</declaration>

Figure 3: description of input/output object.

The last section enumerates C and Java compo-
nents encapsulated in the service. All the input and
output objects used with this method are described
in the second section (see Figure 4).

<event>
<action lang="C" name='"translation">
</action>
<input message="Totranslate"></input>
<output message="TranslationResult">
</output>

</event>

Figure 4: C and Java components.

5 Blue Tongue

Blue Tongue is the result of the collaboration of two
different research groups of ATR. It uses our open
service architecture. It aims to show how machine
translation and expressive speech synthesis can be
used through portable devices like mobile phones or
PDAs. Blue Tongue includes four services: a ma-
chine translation mock-up, an expressive speech pro-
cessing system, a vocal server and a web service.

- 5.1 The machine translation mock-up

We implemented light machine translation services
for specific restricted situations, like at the doctor’s,
at the bar, at home, etc. In these services, a unique
linguistic device is used to realise the whole of trans-
lation, analogy. The idea (Lepage & B3 01) is that
new sentences, for instance pass me the soy sauce,
can be analogically decomposed according to other
sentences.

pass me the
soy sauce.

pass me _ soy

salt: the salt. — sauce ’

If the translations of the sentences in the decomposi-
tion are known, the translation of the new sentence
may be obtained by solving the analogical equation
(Lepage 98) formed with these translations:

B B L TLEEY, =8l :z

=> z= EBHrLoT
(AR

The recursive application of this general principle
is the core of a general translation service. This en-
gine has several instantiations for each language pair
and situation. Running a different light translation
service is just a matter of changing the data files
passed as arguments to the general engine. These
data files contain aligned text chunks in different
languages:

a bad headache D EVEETE,
a bitter pain D LWERE,
bellow with pain EETID,
i have a stomach ache. B\ 72\,

The use of analogy replaces the three macro-
scopic and specific tasks of analysis, transfer and
generation, by three microscopic and generic tasks:
analogy verification, taking the corresponding text
chunks, and resolution of analogical equations. In
this view, analogy verification and resolution of ana-
logical equations can be executed by different clones
of services, and, thus, a sentence may be translated
in different ways by different clones running inde-
pendently, and possibly finishing at different times.
Here is the actual translation of the sentence pass
me the soy sauce:

BHE L >TSS,
Bz o T NELAD,
BHEITHLTLLES Y,

5.2 The expressive speech processing
system -
The speech output module makes use of natural-
speech corpora and re-sequencing synthesis
(Springer Verlag 97) to produce a spoken ren-
dition of the translated utterance. The input to
the module is an XML sequence containing primary
fields for speaker, language, mood, and text. The
voice of the selected speaker is used to synthesise
the speech. For certain speakers there is a choice
of mood - angry, happy, sad, and normal (Speech
Communication). Languages are limited to English
and Japanese in the current implementation, but
there are speakers for Chinese, German, and Korean
available if the text field is provided with adequate
markup. The text field contains the word string
of the utterance to be spoken, as generated by the
translation component. Currently, this is plain
text in the target language, and the synthesiser
makes appropriate orthography-to-pronunciation
conversions as required, but if the text contains
XML markup specifying, e.g., focus, loudness,
speaking-rate, accentuation, pronunciation, etc.,
then a pre-processing module of the synthesiser is
able to produce a more lively or accurate rendition
of the text. Speech is produced as a waveform and
returned to the original user or sent to a third party.
The present implementation is configured as a sin-
gle service in the Java environment, linking to C++
subroutines, but work is in progress to allow separate
services to perform individual sub-tasks of the text-
to-speech synthesis process. For example, a user
may prefer the prosody to be predicted by a dif-
ferent module from the default (to better produce
dialect speech, for example) or a richer orthography-
to-pronunciation, and these tasks will be performed
by optional modules implemented as services in the
same way as the overall system.

5.3 The vocal server

The vocal server is a modem service, which only pro-
vides service delivery. Its purpose is to make a phone
call and play the requested sound file into the phone.
In Blue Tongue, this device service currently only
works on a Windows machine.

5.4 The web service

The web service is a software service, which is a
client-service. Its purpose is to make a request to
another service of Blue Tongue from HTML pages
through the Java server page (JPS) and the Java
common interface gateway (servlet). JSP pages
are dynamic HTML pages. They are automatically
adapted to the device which displays them. The de-
vice currently recognized are IPAQs and imode for
mobile phones. The servlet developed will be used
by the speech synthesizer services: it returns the re-
sult of the speech synthesizer as a sound stream. In

~ Blue Tongue, this software service works on a De-

bian Linux system.

6 Conclusion

We have proposed an open architecture for the devel-
opment, the testing and the deployment of NLP sys-
tems. Based on the Jini network technology, a Java
technology; services run and cooperate on different
platforms through the network. Thanks to a generic
helper class included into each service, they can be
defined and generated automatically from an XML
description. In such a framework, different research
groups with different goals can collaborate by deliv-
ering their research in the form of software services.
For our machine translation mock-up, we have a hi-
erarchy of services: verification of analogies, analogy
transfer and resolution of analogical equations. For
expressive speech synthesis, we have a speech syn-
thesizer and a vocal server. This constitutes Blue
Tongue a text-to-speech translation service accessi-
ble through mobile phones.

Address
http://www.bluetongue.t2u.com/

References

Nicolas AUCLERC & Yves LEPAGE
Tree-banking with parsing aids: an effort assess-
ment using Boardedit
SHEABFERE TAERKE, HEKE, 200143
A, pp. 565-568.

N. CAMPBELL, A. BLAack
Prosody and the Selection of Units for Concate-
native Synthesis
Progress in Speech Synthesis, (Springer Verlag)
1997/2/1.

A. IipA, N. CAMPBELL, M. YASUMURA
A corpus-based speech synthesis system with emo-
tion
Speech Communication, Special Issue on Emo-
tional Speech (in press) .

Yves LEPAGE
Solving Analogies on Words: an Algorithm
Proceedings of COLING-ACL’98, vol I, Montréal,
August 1998, pp. 728-735.

Yves LEPAGE & B# #
SHEFMILFIRREZRAAL
SEABELETEHFERKE, KEKFE, 2001 £3

A, pp. 90-92.

—235—

