il

i

.

5]

AL FR

BITEERKE EERWXE (200143 F)

Tree-banking with parsing aids:
an effort assessment using Boardedit

Nicolas AUCLERC & Yves LEPAGE
{nicolas.auclerc, yves.lepage}@slt.atr.co.jp

ATR FF SEBE e

1 Introduction

We see the process of building a treebank as a
sequence of edition and search operations. We
have proposed a tool which incorporates a tree
editor (Lepage & Auclerc 00) with parsing aids
Boardedit. The aim of this paper is to estimate
the effort in edit operations (not in time) needed
under this tool to augment a treebank.

2 Parsing aids

The construction of a treebank is a very cum-
bersome and time-consuming process and differ-
ent techniques have been proposed to alleviate
it, e.g. (Brants & Crocker 00). We propose to
use the following steps in the construction of a
treebank:

1. Look whether the input sentence already
exists in the treebank. For that, apply an
exact match research method. If there is
no result, then continue.

2. Apply completion by analogy (Lepage 99):
this is more than a searching method (it is
based on analysis by analogy and builds a
candidate for the sentence, from the tree-
bank). Adapt the tree if necessary. If there
is no result then continue.

3. Look for a similar sentence. For that, ap-
ply approximate matching. If there are
results, retrieve their associated structures
and adapt them to obtain the new linguis-
tic structure. If there is no relevant result,
then continue.

4. Build the tree by hand from scratch.

3 Tree editor

Our tree editor is intuitive to use thanks to a
parallel with text editing. Moreover, it is eco-
nomic in the sense that drawing a tree requires

less operations than typing in the corresponding
parenthesised representation.

3.1 Tree editing model

The tree editor specification uses a very special
case of trees: nodes bear only labels, and no
further information. This leads to a parallel be-
tween nodes and subtrees on the one hand, and
words and lines on the other hand (See Table 1).
Thus, any editing function (click, select, insert,
cut, copy, paste, etc.) for trees will have exactly
the same behaviour as in text-editing.

Table 1: Parallel between tree- and text-editing

Tree Text]
label of node word
node -
complete subtree | lines

Although the parallel clearly shows that a
node is different from a label. This distinction
is usually not intuitive for a naive user. People
usually think that “a label is a node.” To make
our tool intuitive to users, we do not contradict
this way of thinking.

There are three ways to manipulate a tree:

o The keyboard: Table 2 shows that each key
operation costs only one operation.

o The mouse: it allows the user to create a
node by clicking on a sensitive area and to
make selection of nodes and complete sub-
trees.

o The clipboard: it allows the user to transfer
a complete subtree in two keystrokes (one
for copy, one for paste).

— 565 —

Table 2: Equivalences of edit functions in trees and text

Click Effect Place Cost
Text | Tree
single (sensitive area) | position cursor in... | - new node 1
single (on a selection) | start drag and drop | text tree 1
single (on a node) position cursor in... | word node 1
double (on a node) select the. .. word node 2
triple (on a node) select the. .. line complete subtree 3
Keystroke Effect Place Cost
Text | Tree
<sp> start a new... word node as right sister 1
<ret> start a new... line node as daughter 1
<T> move cursor to... line above | mother node 1
<|> move cursor to... line below | leftmost daughter node | 1

3.2 Gain in using the tree editor

The upper part of Table 3 shows the correspon-
dence between the keystrokes listed in Table 2
and separators used in parenthesised represen-
tations of trees. It makes explicit that our tree
editing model follows the text editing model
closely.

Table 3: Operations corresponding to separa-
tors

Separator | Keystroke |
(<ret>
, <sp>
) <>
[Separator | Click |
[DI, | <single> |

As aresult, a tree like A(B(C,D)),E will be in-
putted in our tree editor by simply replacing the
separators with their corresponding keystrokes.
With this, the effort to input a tree under our
tree editor would be the same as inputting the
parenthesised representation under a text edi-
tor. However, we do not need any closing paren-
theses to get a tree drawn. By using one click
we can reduce the number of keystrokes: any
sequence of closing parentheses followed by a
comma can be replaced by a single click of the
mouse to create a new node at the right position
on the drawing panel (see lower part of Table 3).
The previous tree can thus be inputted by the
sequence: A <ret> B <ret> C <sp> D <single

click> E. In this way, the number of needed op-
erations, i.e. the effort, is just twice the number
of nodes to create the structure plus the total
number of characters in the labels.

In all cases, inputting or modifying a tree un-
der our editor takes less effort, measured by op-
erations (clicks and keystrokes), than inputting
or modifying its parenthesised representation
under a text editor.

4 Experiments
4.1 Data

We augmented a tree-bank of 5 000 sentences
(the base set) with 1 553 new sentences (the
test set). Our data come from ATR-NEC de-
pendency tree-bank (Lepage & al. 98). The
sentences consist of Japanese hotel reservation
dialogues. The tree structures use dependency
representations.

We used the steps presented in section 2 to in-
sert the 1 553 new sentences into the treebank.
In fact, for each of these 1 553 sentences, we al-
ready know the corresponding linguistic struc-
tures which we must get at the end. By compar-
ing these structures with the results obtained by
exact matching, completion by analogy or ap-
proximate matching, we can measure the effort
needed to obtain the exact structure counted in
number of operations (keystrokes and clicks).

4.2 Baselines

The first baseline is obtained by doing as if we
would have inputted all the new trees under

— 566 —

a text editor in their parenthesised representa-
tions. This would have cost us 88 394 keystrokes
(total number of characters in labels and sepa-
rators).

The second baseline is obtained by using the
tree editor. If we would have built the struc-
tures of the 1 553 trees by hand, this would
have cost us 13 006 clicks under the tree editor
to design the structures and 41 789 characters
to type in all nodes. In total, this is 54 795 op-
erations. As said above, we see that using the
tree editor easies the task. The effort is reduced
by (88 394 — 54 795)/88 394 = 38%.

4.3 Proposed method with parsing aids
4.3.1 Exact matching

First, we apply exact matching. Of the 1553
sentences (sequences of syntactic classes), 493
are already in the treebank. In 465 of the cases,
the treebank provides an exact parse, which
means no effort to do (0 operations). In the
remaining 28 cases, a different tree than the ex-
act one is retrieved, due to different representa-
tional choices. For instance, the representations
of “TLRXTEET L, Yand “=FHEILH) ¥
X, 7 are not the same, although the sequences
of categories are the same, but 3 <'IT is adver-
bial whereas =5 HIZ is a location complement.

We computed the effort needed if we would
have edited the 28 wrong structures. This ef-
fort is the effort needed to modify by hand
these structures to make them equal to the ex-
act structures. We counted a total of 64 opera-
tions needed using our tree editor.

4.3.2 Completion by analogy

In the cases where the sentences were not ex-
actly parsed by exact matching (1553 — 465 =
1088 sentences), sentences, we now apply the
technique of completion by analogy.

Table 4: Results of completion by analogy

compared to the exact answers!. In 64% of the
cases (701 sentences), we got at least one struc-
ture proposed. In almost half of the cases (337
sentences), one of the structures proposed is the
exact one, so that no effort to edit is needed
in those cases. However, scanning through the
answers is needed: in the worst case, this is 5
clicks. In total, this would be 337 x 5 = 1 685.
If we wanted to edit the structures proposed
in the 701 — 337 = 364 other cases, the ef-
fort needed is measured by the edit distance
on trees. In average, there are 3.95 tree struc-
tures proposed, so that, in the worst case, we
need 3.95 X 364 = 1438 clicks to scan until
the best tree proposed. We counted 1891 clicks
needed to transform the best structure proposed
into the exact structure. As a total this yields
1891 x (14 3.21) = 7 961 operations (clicks and
keystrokes) to perform the transformations?.

4.3.3 Approximate matching

In the cases where the sentences were not ex-
actly parsed by completion by analogy (1 088 —
337 = 751 sentences), we apply approximate
matching. This consists in finding the closest
sentences in the base (recall that we look for cat-
egory sequences, not for word sequences), and
then proposing the tree corresponding to the
sentence found. In average the tree proposed
is at a distance of 5.75 nodes from the desired
tree. In total, transforming those trees into the
exact ones would cost 4 319 operations (clicks
and keystrokes).

Compared with the figure of 7 961 operations
obtained in the previous subsection, this shows
that, when completion by analogy does not de-
liver an exact result, it is preferable to use ap-
proximate matching than trying to adapt by
hand a tree proposed by completion by analogy.

4.3.4 Drawing trees from scratch

In this experiment we never need to draw any
tree from scratch, because editing a tree ob-
tained by approximate matching is always faster
than redrawing the complete tree from scratch.

The outputs of completion by analogy are

number of | percentage

sentences
total 1 088 100%
parsed 701 | 100% 64% could have taken any number.
exactly parsed 337 | 48% 30%

!We took only the first 10 results coming out. We
However, experiments
have shown that the increase in quality is not really
significant (only 1% increase in the number of exactly
parsed sentences, i.e. 9 sentences, from 10 to 90 results).

2One single click to position the cursor, plus average
length of nodes in characters (3.21).

— 567 —

5 Analysis of the experiment

" We now summarise the experiment by com-
paring the number of operations (clicks and
keystrokes) in three settings: Using the pro-
posed methods (parsing aids plus tree editor),
using a text editor to input parenthesised repre-
sentations of the trees (1st baseline) and using
our tree editor only (2nd baseline). The results
are summarised in Table 5. We added the num-
ber of times the user has to click menu buttons
to activate the parsing aids at each step.

Table 5: Summary

method nbr of nbr of

operations | sentences

menu buttons 3 x 1553

exact matching 0 465

compl. by analogy 1685 337

approx. matching 4 319 751

proposed method (total) (total)

(parsing aids) 10 663 1553

2nd baseline

(tree editor) 54 795 1553

1st baseline

(text editor) 88 394 1553

Clearly, the use of the four steps proposed
in Section 2 is extremely benefic: it re-
duces the number of keystrokes by (54 795 —
11 156)/54 795 = 81% compared with the use
of the tree editor alone, and by (88 394 —
11 156)/88 394 = 88% with the use of a text ed-
itor to input the parenthesised representations.

6 Future work

The previous computations are worst cases of
use of the parsing aids. It would be better to
refine by separating into deletions, insertions
and replacement to compute the effort more pre-
cisely. An insertion is one click plus the average
number of characters per node. A deletion is a
double click to select the node (or triple click
to select a complete subtree) and one keystroke
on the key. A replacement counts as a
double click to select the node (or triple click
for a complete subtree), followed by the num-
ber of characters in the new node. Also, we did
not use copy/paste, which may still reduce the
number of operations.

In this experiment, we did not take the time
into account. As a matter of fact, changing from
the keyboard to the mouse (and vice-versa)
takes time. Thus, although we would expect a
measure of time to be always in favour of the use
of the proposed steps, the gap between the dif-
ferent methods may be reduced from that point
of view.

In the future, we want to integrate more
the parsing aids together. As a first step, al-
ready done, we incorporated exact matching
with completion by analogy, so that the user
does not need in fact to separate the first two
steps described here. A second step is to inte-
grate approximate matching after a failed try
with completion by analogy.

7 Conclusion

To speed up tree banking, we proposed a tool,
a tree editor with parsing aids. We have shown
that this can enormously reduce the number
of operations (clicks and keystrokes) needed to

augment a treebank of 5000 sentences by 1553

new sentences. The reduction has been shown
to be more than 4/5 of the effort.

References

Thorsten BRANTS & Matthew CROCKER
Probabilistic Parsing and Psychological
Plausibility
Proceedings of COLING 2000, vol 1,
Saarbriicken, July-August 2000, pp. 111-117.

Yves LEPAGE, ANDO Shin-Ichi, AKAMINE
Susumu, I1pA Hitoshi
An annotated corpus in Japanese using
Tesniére’s structural syntax
ACL-COLING Workshop on Processing of
Dependency-Based Grammars, Montréal, Au-
gust 1998, pp. 109-115.

Yves LEPAGE
Open Set Experiments with Direct Analysis
by Analogy
Proceedings of NLPRS-99, Beijing, November
1999, pp 363-368.

Yves LEPAGE & Nicolas AUCLERC
A tool to build a tree bank for conversational
Chinese
Proceedings of ICSLP 2000, vol 1V, Beijing,
October 2000, pp. 985-988.

— 568 —

