il

o

FUBESE | mERAE (19954 3 A)

Parallel Implementation of
Information Retrieval With Relevance Feedback

Ali M. AlHaj Eiichiro Sumita Hitoshi Iida
ATR Interpreting Telecommunications Research Laboratories

1 Introduction

Relevance feedback is a well-known method developed to improve the effectiveness of infor-
mation retrieval systems. It is based on the automatic and iterative refinement of the textual
queries supplied by the users. This method is computationally intensive, and thus it is rarely
implemented on the mostly sequential existing information retrieval systems. In this paper, we
describe a parallel information retrieval system which efficiently implements relevance feedback.
First, a brief description of relevance feedback and its application within the vector process-
ing retrieval algorithm is given in section 2. Next, a parallel implementation of the system is
described in section 3, and evaluated in section 4. Finally, concluding remarks are given in
section 3.

2 Relevance Feedback

Retrieving textual information using information retrieval systems is inherently more difficult
task than retrieving formatted data using database management systems. This is mainly due to
the complexity involved in the textual query formulation process. The complexity arises from
the users lack of detailed knowledge of the textual database and the retrieval environment.
To deal with this problem, the retrieval operation is usually broken down into a sequence of
retrieval steps, where the tentatively-formulated users queries are used in the first step, and
more efficient system-formulated queries are used in the latter steps.

A well-known method which has proved to be effective in producing efficient system-formulated
queries is the relevance feedback [1]. This method is based on the automatic reformulation and
improvement of the user’s original query by making use of given information about the useful-
ness of documents previously retrieved in earlier retrieval steps. Relevance feedback utilizes the
relevance information in the new query formulation in such a way to enhance the importance of
the relevant documents and reduce the importance of the non-relevant documents. The effect
of such a query formulation process is to move the original query in the direction of the relevant
documents and away from the non-relevant documents.

The relevance feedback method was originally developed to be used within the vector process-
ing document retrieval algorithm. In this algorithm both documents and queries are modeled as
vectors of weighted terms, where term weights are real-numbers between 0 and 1. The retrieval
operation consists of scoring documents vectors as to how well they match a given query vector,
then returning the top ranked documents to the user. Relevance feedback formulates a new
query vector by simply utilizing the retrieved documents vectors to expand and re-weight the
original query vector.

—337—

3 The Implementation

Our implementation consists of four major steps; (1) generating a term weighted vector for each
document and query in the text database, (2) performing a parallel score and rank operation
to decide on how well each document vector matches a given query vector, (3) retrieving the
documents which have the highest similarity scores and judging their relevance to the query
vector, and finally (4) formulating a new query and repeating the score and rank operation
until all relevant documents are retrieved. These steps are shown in the flowchart of Figure 1,

and explained briefly below.

o Generate term weighted vectors: the first step in a vector processing text retrieval system
implementation is to represent each document and each query contained in the full-text
database by a term weighted vector. The weighted vector generation process is carried
out on the host machine by running the following three text pre-processing operations [2]:

i. Filtering: use a stop list of common function terms (and,of,or,but,the,etc,...) to
eliminate from the text of documents and queries such high frequency terms which
are insufficiently specific for their representations.

iii.

Text
Database

1

Generate Term
Weighted Vectors

Formulate Relevance
Feedback Query

)

Compute and Rank
Similarity Scores

l

Make Documents
Relevance Judgment

Figure 1: Flowchart of the implementation.

. Stemming: use suffix stripping routine to reduce the remaining terms to term stem

Weight assignment: for each remaining term stem ¢ occuring in document j, compute
a term weighting factor, which is the product of the term frequency of term ¢ in
document j multiplied by the inverse document frequency of term j in the documents
database as a whole. The term weights are restricted to the range from 0 to 1, where
0 represents a term that is absent from the vector, and 1 represents a fully weighted

—338—

e Compute documents similarity scores and rank them in decreasing order. This corresponds
to (1} loading the documents and query term weighted vectors into the main memory of the
parallel machine, (2) distributing the processing of the query vector matching operation
on all processing elements of the parallel machine by assigning different documents vectors
to different processing elements, (3) performing in parallel the query vector matching
operation in such a way that each processing element executes an inner product operation
between the query vector and each assigned document vector, and finally (4) ranking the
documents in decreasing order of their similarity scores.

e Judge the relevance of the top n scored ranked documents where n is an arbitrary number
predetermined by the user. The relevance judgment is made automatically be referring
to the relevance information file which contains names of the most relevant documents to
the query. If all (or sufficient) relevant documents have been retrieved, exit the retrieval
operation and refer to the relevant retrieved documents full text in the disk file of the host
machine. Otherwise, move on to the next step to retrieve more (or the remalmng) relevant
documents by applying the relevance feedback method.

e Formulate a new query vector by expanding and re-weighting the original query. This is
done by adding all terms and corresponding weights from all relevant document vectors,
and subtracting the weights of all terms found to be existing in the top ranked non-relevant
document vector. This query reformulation process is called the Ide dec-hi method and it
has proved to be superior to many other relevance feedback methods. After formulating
the new query, repeat the above two steps until all (or most) relevant documents are
retrieved.

4 Performance Evaluation

We carried out the relevance feedback implementation on the KSR parallel computing system [3].
The KSR system is an MIMD type parallel computer which combines the shared-memory ar-
chitecture of traditional supercomputers and mainframe systems with the scalability of highly
parallel systems. Unlike the typical memory architecture which has large pools of main memory
and small caches, all KSR main memory consists of large, communicating local caches each of
which physically adjacent to a processor. Communication between the caches is implemented
using a slotted, pipelined, rotating ring. A parallel application can be easily implemented on
the KSR system by breaking it down into several pieces of work, and assigning each one to a
pthread. A pthread is a sequential flow of control within a process that cooperates with other
pthreads to solve the application problem. Pthread parallel programming is done using an
extended version of the standard C language.

The implementation was evaluated using LISA; an experimental library science documents
collection which consists of 6004 documents and 35 queries. First, the host computer gen-
erated the documents weighted vectors and the weighted vector of the query which has the
largest number of relevant documents. Next, the vectors were read and processed in paral-
lel by a KSR model consisting of 25 processors connected to a distributed shared memory of
800 MB (0.8 GB). Finally, retrieval performance was measured by the recall (R) and precision
(P) measures, where recall is defined as the proportion of relevant documents that are retrieved
from the collection, and precision is the proportion of retrieved documents that are relevant.
The (R) and (P) were measured under the assumption that the top 20 documents retrieved in
the initial search are judged for relevance.

—339—

Iteration | Query Size | Retrieval Performance | Time Performance (msec.)
Recall | Precision Time(1) | Time(25) | Speedup
0 18 0.264 0.700 005.04 00.23 22.37
1 477 0.358 0.475 106.93 04.78 22.33
2 609 0.509 0.450 136.11 06.06 22.42
3 823 0.584 0.387 183.65 08.23 22.31
4 969 0.716 0.380 215.86 09.64 22.38
5 1228 0.735 0.325 273.65 12.23 22.36
6 1268 0.811 0.307 282.49 12.59 22.43
7 1396 0.849 0.281 311.51 13.93 22.35

Table 1: Retrieval and speed performance of the relevance feedback parallel implementation.

Retrieval and time performance data are given in Table 1, where iteration 0 corresponds to the
processing of the initial query, and the successive iterations correspond to the processing of the
queries formulated by relevance feedback. The number of feedback iterations was determined
dynamically by allowing a new feedback iteration only when the previous iteration produced
any relevant documents. That is, the relevance feedback was suspended automatically when
the top retrieved documents contained no relevant documents. The recall figures in the table
prove that the retrieval quality becomes better and better as more feedback iterations are ex-
ecuted. Similarly, the query size figures give a clear evidence of the increased computational
demands posed by relevance feedback operation and thus its potential for parallel implementa-
tion. Finally, we carried out a sequential implementation of the same retrieval experiment on
a single processor, and compared the speed performance with that of the parallel implemen-
tation. As given in the table, the parallel implementation was more than 22 times faster than
the sequential implementation.)

5 Conclusion

The relevance feedback query reformulation method improves information retrieval performance
significantly. However, due to its iterative and computation-intensive nature, it is hardly im-
plemented on most commercial information retrieval systems. Therefore, sufficiently powerful
systems are needed to implement this method to benefit from its effective performance. In
this paper we presented an efficient implementation of relevance feedback on a parallel shared-
memory computer system. Based on the performance results we obtained we can easily conclude
that parallel machines are indeed well-suited to meet the computational demands posed by the
relevance feedback method.

References

(1] Salton, G. and Buckley, C., ”Improving Retrieval performance by Relevance Feedback,”
in Journal of the American Society for Information Science, 24, pp. 288-297, 1990.

[2] Frakes, W. and Baeza-Yates, R., Information Retrieval Data Structures & Algoirthms,
Prentice Hall, New Jersey, 1992.

[3] Kendall Square Research Corporation., Technical Manuals, MA, USA, 1994.

—340—

