
Investigating context influence in character Level LSTM
methods for Japanese Auto Punctuation

Qi Chen, Jianmin Wu, Tianhuang Su

EBG, Baidu Inc, Shenzhen, 518052

{chenqi21, wujianmin01, sutianhuang}@baidu.com

1. Introduction
Automatic speech recognition (ASR) systems
for Latin languages generate a stream of words.
For Asia language, ASR systems usually just
produce a sequence of characters, like Chinese
and Japanese. Both kinds of the above men-
tioned systems don’t get punctuated directly.
However, in many situations, people do need
punctuation marks to help them understand bet-
ter and faster. For instance, during the process
of meeting minutes transcription and simulta-
neous interpretation, the accurate punctuation
for ASR output can save lot efforts and help
people concentrate on linguistic proofread.
 So far, plenty of works have been done in
auto punctuation. Before deep learning comes
to trend, the most popular methods can be ad-
dressed as: 1. Introduce punctuations during
N-gram language model training and predict it
in the same ways as words. 2. Combine lexical
features and prosodic features (pause duration,
etc.) [12], and do classification with machine
learning algorithms. 3. Treat the task as a se-
quence-labeling problem and solve it with con-
ditional ransom fields (CRFs)[2].
 Considering deep learning’s high performan-
ce in other tasks, many researchers starts to ap-
ply it on auto punctuation. CNN based method
that proposed by Che. X et al. [6] made use of
context formatted pre-trained Word Vectors as
input. They treated the punctuation task as a
4-class classification problem.
 Tilk et al. [3] proposed a two-stage RNN
model using long short-term memory (LSTM)
[10] units, their first stage use only lexical fea-
tures in large corpus, the second stage use both
lexical feature and pause duration information.

To include both the past and future observation,
Xu K. et al. [4] adopted a multilayer Bidirec-
tional LSTM (Bi-LSTM) framework in use of
word Embedding features, and punctuate Chi-
nese sentences with 3-class labels. Ballesteros
M et al. [7] used character-based embedding
and LSTM model to do punctuation prediction
on full range of punctuation marks across lan-
guages. Tilk O et al. [5] also improved their
model by introducing an Attention Mechanism
[9] to their Bi-GRU models.
 Almost all above models are trained on lan-
guages that do not need word segmentation. [4]
predicts Chinese punctuations but with seg-
mented corpus processed by Mecab[1]. Inspired
by [7,13], we base our models on character
embedding for Japanese punctuation. Since
Japanese does not have word boundary and
have introduced many foreign words, using
word level embedding can cause huge vocabu-
lary and sparse model. In addition, we investi-
gated different ways of utilizing context infor-
mation. Our results shows using local attention
information in Bi-LSTM can elevate the per-
formance. The model has been deployed in our
IME product (Simeji voice input), and serves
our users.

2. Methods
All of our models take character embedding as
input, and they are based on single layer LSTM
[10] to explore the different ways of applying
lexical context information. The task can be
formulated as follows.
 Given a character sequence with length T:

𝑥 = [𝑥!, 𝑥!,… , 𝑥!] (1)
 Transform to embedding with size N:

𝑋 = 𝑋!,𝑋!,… ,𝑋! ,𝑋! ∈ 𝑅! (2)

― 730 ―

言語処理学会 第24回年次大会 発表論文集 (2018年3月)

Copyright(C) 2018 The Association for Natural Language Processing.
All Rights Reserved.

 Predict label 𝑦! after character 𝑥! among
K=5 labels, with model 𝑓!:

𝑦! = 𝑎𝑟𝑔 max
!!!:!

(𝜎(𝑊!𝑓! 𝑋 + 𝑏)) (3)
 Where 𝜎 𝑧 is the softmax function:
 𝜎 𝑧 ! =

!!!

!!!!
!!!

 (4)

𝑦! ∈ 𝑁,𝐶,𝑃,𝑄,𝐸 (5)
 Here N is the label for no punctuation mark,
C for comma “、”, P for period “。”, Q for
question “？”, and E for exclamation “！”. In
following sections, we would describe the mod-
els 𝑓! in detail.

2.1. Future Context LSTM

The first model we use is a unidirectional
LSTM with future context window. Unidirec-
tional LSTM can only make use of past infor-
mation, so we add a future window to include
the future information. The model can be de-
scribed as:

𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑋! = 𝑋! ,𝑋!!!,… ,𝑋!!! (6)

ℎ! ,𝐶! = 𝐿𝑆𝑇𝑀(𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑋! , ℎ!!!,𝐶!!!) (7)

𝑓!! 𝑋 = ℎ!, ℎ!,… , ℎ! (8)

 Here the hidden state of LSTM cell is ℎ! at
time t, the cell state is 𝐶!, and 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑋! is
the context feature with window size 𝑤. Pad-
ding should be done when the sliding future
window exceeds the sequence length.

2.2. Bi-LSTM

Bi-LSTM can utilize both past information and
future information at a specific time. We intro-
duce the Bi-LSTM model for comparing the
context influence. The model description is as
follows:

ℎ! ,𝐶! = 𝐿𝑆𝑇𝑀 𝑋! , ℎ!!!,𝐶!!! (9)
ℎ! ,𝐶! = 𝐿𝑆𝑇𝑀 𝑋! , ℎ!!!,𝐶!!! (10)

ℎ! = ℎ! , ℎ! (11)
𝑓!! 𝑋 = ℎ!, ℎ!,… , ℎ! (12)

 ℎ! is the hidden state of the forward LSTM
layer at time step t, ℎ! is computed the same
way as ℎ! except the input X is processed in
reverse order. We use two direction hidden fea-

ture ℎ! for label prediction.

2.3 Bi-LSTM with local Attention

In [4], the author proved that deeper Bi-LSTM
is useful for predicting comma and period while
modeling the context of output punctuation la-
bels with CRF would harm the performance,
since auto punctuation is a highly imbalanced
task and there exist weak relationships among
the labels. This is explicable: the appearance of
a comma in a sentence is not much relevant to
other commas or periods. LSTM methods can
make use of context information, but there also
exists the label interference during the optimiz-
ing process due to the information flow between
different time steps. The loss of one label can
affect the other time step label prediction.
 Inspired by this, we want make better use of
the word context while decoupling the label
context. Attention mechanism [9] can help ad-
dress this problem. Our Bi-LSTM with local
attention model is defined as:

 𝑠! = 𝑎 ℎ! , ℎ! ℎ!
!!!!!!!
!!!!!!!!!

 (13)

 𝑒 ℎ! , ℎ! = 𝜈!! tanh 𝑊!!ℎ! + 𝑈!!ℎ! (14)

𝑎 ℎ! , ℎ! =
𝑒 ℎ! , ℎ!

𝑒 ℎ! , ℎ!
!!!!!!!
!!!!!!!!!

 (15)

𝑓!! 𝑋 = 𝑠!, 𝑠!,… , 𝑠! (16)

 We use the current Bi-LSTM hidden state ℎ!
and all the hidden states fall in the window cen-
tered at t (window size 𝑙!) to calculate their
similarities 𝑒 ℎ! , ℎ! . Then the alignment score
𝑎 ℎ! , ℎ! is calculated by softmax function.
The finally context vector is the weighted aver-
age over the in-window hidden states. If the
sliding window crosses the sentence boundary,
we choose to ignore the outside part. The de-
tailed structure of this model is presented in
Figure 1. This mechanism can automatically
search the most relevant features within the
window size 𝑙! for label prediction at time step
t. It’s called local attention and was proposed in
[11] for encoder decoder problem. Compared to
global attention, it requires less memory and
more computationally efficient.

― 731 ― Copyright(C) 2018 The Association for Natural Language Processing.
All Rights Reserved.

Figure1: Bi-LSTM with local Attention

 [5] also used attention mechanism, but in a
different way. They forward Bi-GRU hidden
state to another GRU, and calculate the atten-
tion based on previous GRU hidden state and all
Bi-GRU hidden states. Using another GRU
cause their output labels still have interference
with each other in time order.

3. Experiments
3.1 Data Preparation

Before training, we extract the high frequency
characters as our vocabulary dictionary (size
6797). We add “[Alpha]”, “Num” to our vocab-
ulary, replace all English words with “Alpha”
and all numbers with “Num” during prepro-
cessing. This can avoid English words or num-
bers been split by mistake during prediction
process. We also use “Unk” to present all un-
known characters in sentences. Then we extract
the character–label sequence pairs to form our
data set.

Dimension Train Set Test Set
No. of sentences 23592151 10000
Average length 27.5 27.5

Characters 650009658 275484
Comma 29237800 12313
Period 18791497 7927

Question 1598499 697
Exclamation 3205905 1381

Table 1: Data Set details
 We use the punctuated twitter data as train set
and test set. The description of our data sets is
detailed in Table 1. The train set is composed

by 23.5M sentences, and the test set has10k
sentences. The average length of sentences in
both sets is 27.5. In our data sets, comma holds
4.5%, period holds 2.89%, question holds
0.25%, and exclamation holds 0.49%.

3.2 Evaluation metrics

We use conventional Precision, Recall, and
F1-score as model evaluation metrics. For
over-all metric, we removed the null options
and focus on evaluating punctuation marks as [6]
did. We also calculate precision, recall and
F1-score for comma, period, question and ex-
clamation respectively in similar way.

3.3 Results

Table 2 and Table 3 show our experiments re-
sults in detail. FC-LSTM-w represents the Fu-
ture Context LSTM model and the adjacent
number indicates the future window size.
Bi-LSTM-A stands for Bi-LSTM with local at-
tention model (attention window size 5). For
comma prediction, Bi-LSTM-A method out-
performs all the others. It improves 1.74%
F1-score compared to Bi-LSTM, and 5.72%
F1-score to FC-LSTM-w4. For question and
exclamation, FC-LSTM-w2 performs best with
highest recall and F1-score, but relatively lower
precision. There is a reciprocal relationship
among the results of question, exclamation and
period, since they all indicate sentence ends and
are always falsely transformed from one to the
other. For end of sentence punctuations, we just
need past information since they are the ends of
the sentence. So FC-LSTM performs best. The
future window can help distinguish them from
comma. But for comma, the better representa-
tion of both directional can achieve better re-
sults, so Bi-LSTM-A performs best by intro-
ducing feature importance in attention window.
 In addition, our new model prefers to trans-
form questions and exclamations to periods,
which decreases the period precision. In prac-
tice, it’s acceptable. To explain the decrease of
recall, we note that most question and exclama-
tion sentences are longer than 10 while our at-
tention window size is 5, after attention calcula-
tion, it cannot capture the information that is too
far away from the center word. Experiments on

― 732 ― Copyright(C) 2018 The Association for Natural Language Processing.
All Rights Reserved.

attention window size can be explored in further research.

MODELS COMMA

PERIOD

QUESTION

 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1

FC-LSTM-w1 73.64 53.59 62.04 83.54 96.28 89.46 69.46 47.63 56.51

FC-LSTM-w2 74.16 59.39 65.96 83.77 96.20 89.56 70.58 49.21 57.99

FC-LSTM-w4 74.22 61.88 67.49 83.61 96.39 89.55 69.12 47.20 56.10

Bi-LSTM 75.15 66.34 70.47 82.93 97.57 89.65 71.72 44.76 55.12

Bi-LSTM-A 77.77 67.38 72.21 79.17 99.90 88.34 100.0

0

0.14 0.29

Table 2: Comma, Period, Question results on Twitter Test set.

MODELS EXCLAMATION

NO-PUNC

PUNC-AVER.

PUNC-AVER.

Pr. Re. F1 Pr. Re. F1 Pr. Re. F1

FC-LSTM-w1 54.40 15.21 23.77 97.77 99.06 98.41 77.91 66.19 71.58

FC-LSTM-w2 54.11 16.22 24.96 98.04 98.99 98.51 78.06 69.48 73.52

FC-LSTM-w4 54.31 15.06 23.58 98.16 98.95 98.55 77.96 70.78 74.20

Bi-LSTM 61.83 10.79 18.37 98.37 98.93 98.65 78.40 73.32 75.77

Bi-LSTM-A 100.0 0.14 0.29 98.42 99.06 98.74 78.46 72.69 75.47

Table 3: Exclamation, PUNC-AVER, No-Punc results on Twitter test set.

4. Conclusion
In this paper, we compared different ways of
introducing context information in auto punctu-
ation tasks. Our Bi-LSTM with local attention
model performs best among all the models. Fu-
ture study can be conducted on improve the at-
tention method, for example, the similarity cal-
culation, attention center word position selec-
tion.

5. References
[1] Kudo T. Mecab: Yet another part-of-speech and mor-
phological analyzer[J]. http://mecab. sourceforge. net/,
2005.
[2]Y.Liu,A.Stolcke,E.Shriberg,andM.Harper,“Using con-
ditional random fields for sentence boundary detection in
speech,” in Proceedings of the 43rd Annual Meeting on
Association for Computational Linguistics. Association
for Computational Linguistics, 2005, pp. 451–458.
[3]Tilk O, Alumäe T. LSTM for punctuation restoration
in speech transcripts[C]//Sixteenth annual conference of
the international speech communication association.
2015.
[4] Xu K, Xie L, Yao K. Investigating LSTM for punctu-
ation prediction[C]//Chinese Spoken Language Pro-
cessing (ISCSLP), 2016 10th International Symposium
on. IEEE, 2016: 1-5.

[5]Tilk O, Alumäe T. Bidirectional Recurrent Neural
Network with Attention Mechanism for Punctuation
Restoration[C]//INTERSPEECH 2016:3047-3051
[6] Che X, Wang C, Yang H, et al. Punctuation Prediction
for Unsegmented Transcript Based on Word Vec-
tor[C]//LREC. 2016.
[7] Ballesteros M, Wanner L. A neural network architec-
ture for multilingual punctuation generation[C]// Pro-
ceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing; 2016 Nov. 1-5; Austin
(TX, USA).[place unknown]: ACL; 2016. p. 1048-53.
ACL (Association for Computational Linguistics), 2016.
[8]Ueffing N, Bisani M, Vozila P. Improved models for
automatic punctuation prediction for spoken and written
text[C]//INTERSPEECH. 2013: 3097-3101.
[9]D. Bahdanau, K. Cho, and Y. Bengio, “Neural ma-
chine trans-lation by jointly learning to align and trans-
late,” ICLR2015, arXiv:1409.0473, 2015. �
[10]Hochreiter S, Schmidhuber J. Long short-term
memory[J]. Neural computation, 1997, 9(8): 1735-1780.
[11]Luong M T, Pham H, Manning C D. Effective ap-
proaches to attention-based neural machine translation[J].
arXiv preprint arXiv:1508.04025, 2015.
[12] J.-H. Kim and P. C. Woodland, “The use of prosody
in a combined system for punctuation generation and
speech recognition.” in INTERSPEECH, 2001,pp. 2757–
2760.
[13]Ballesteros M, Dyer C, Smith N A. Improved transi-
tion-based parsing by modeling characters instead of
words with LSTMs[J]. arXiv preprint arXiv:1508.00657,
2015.

― 733 ― Copyright(C) 2018 The Association for Natural Language Processing.
All Rights Reserved.

