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1. Introduction 
Automatic speech recognition (ASR) systems 
for Latin languages generate a stream of words. 
For Asia language, ASR systems usually just 
produce a sequence of characters, like Chinese 
and Japanese. Both kinds of the above men-
tioned systems don’t get punctuated directly. 
However, in many situations, people do need 
punctuation marks to help them understand bet-
ter and faster. For instance, during the process 
of meeting minutes transcription and simulta-
neous interpretation, the accurate punctuation 
for ASR output can save lot efforts and help 
people concentrate on linguistic proofread.  
  So far, plenty of works have been done in 
auto punctuation. Before deep learning comes 
to trend, the most popular methods can be ad-
dressed as: 1. Introduce punctuations during 
N-gram language model training and predict it 
in the same ways as words. 2. Combine lexical 
features and prosodic features (pause duration, 
etc.) [12], and do classification with machine 
learning algorithms. 3. Treat the task as a se-
quence-labeling problem and solve it with con-
ditional ransom fields (CRFs)[2].   
  Considering deep learning’s high performan-
ce in other tasks, many researchers starts to ap-
ply it on auto punctuation. CNN based method 
that proposed by Che. X et al. [6] made use of 
context formatted pre-trained Word Vectors as 
input. They treated the punctuation task as a 
4-class classification problem.  
  Tilk et al. [3] proposed a two-stage RNN 
model using long short-term memory (LSTM) 
[10] units, their first stage use only lexical fea-
tures in large corpus, the second stage use both 
lexical feature and pause duration information. 

To include both the past and future observation, 
Xu K. et al. [4] adopted a multilayer Bidirec-
tional LSTM (Bi-LSTM) framework in use of 
word Embedding features, and punctuate Chi-
nese sentences with 3-class labels. Ballesteros 
M et al. [7] used character-based embedding 
and LSTM model to do punctuation prediction 
on full range of punctuation marks across lan-
guages. Tilk O et al. [5] also improved their 
model by introducing an Attention Mechanism 
[9] to their Bi-GRU models. 
  Almost all above models are trained on lan-
guages that do not need word segmentation. [4] 
predicts Chinese punctuations but with seg-
mented corpus processed by Mecab[1]. Inspired 
by [7,13], we base our models on character 
embedding for Japanese punctuation. Since 
Japanese does not have word boundary and 
have introduced many foreign words, using 
word level embedding can cause huge vocabu-
lary and sparse model. In addition, we investi-
gated different ways of utilizing context infor-
mation. Our results shows using local attention 
information in Bi-LSTM can elevate the per-
formance. The model has been deployed in our 
IME product (Simeji voice input), and serves 
our users.  

2. Methods 
All of our models take character embedding as 
input, and they are based on single layer LSTM 
[10] to explore the different ways of applying 
lexical context information. The task can be 
formulated as follows. 
  Given a character sequence with length T: 

𝑥  = [𝑥!, 𝑥!,… , 𝑥!]                    (1) 
  Transform to embedding with size N: 

𝑋 = 𝑋!,𝑋!,… ,𝑋! ,𝑋!  ∈ 𝑅!            (2) 
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  Predict label 𝑦!  after character 𝑥!  among 
K=5 labels, with model 𝑓!: 

𝑦! = 𝑎𝑟𝑔 max
!!!:!

(𝜎(𝑊!𝑓! 𝑋 + 𝑏))        (3) 
  Where 𝜎 𝑧  is the softmax function: 
          𝜎 𝑧 ! =

!!!

!!!!
!!!

            (4) 

𝑦! ∈ 𝑁,𝐶,𝑃,𝑄,𝐸                           (5) 
  Here N is the label for no punctuation mark, 
C for comma “、”, P for period “。”, Q for 
question “？”, and E for exclamation “！”. In 
following sections, we would describe the mod-
els 𝑓! in detail. 

2.1. Future Context LSTM 

The first model we use is a unidirectional 
LSTM with future context window. Unidirec-
tional LSTM can only make use of past infor-
mation, so we add a future window to include 
the future information. The model can be de-
scribed as: 

𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑋! = 𝑋! ,𝑋!!!,… ,𝑋!!!       (6) 

ℎ! ,𝐶! = 𝐿𝑆𝑇𝑀(𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑋! , ℎ!!!,𝐶!!!) (7) 

𝑓!! 𝑋 = ℎ!, ℎ!,… , ℎ!                (8) 

  Here the hidden state of LSTM cell is ℎ! at 
time t, the cell state is 𝐶!, and 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑋!  is 
the context feature with window size 𝑤. Pad-
ding should be done when the sliding future 
window exceeds the sequence length.  

2.2. Bi-LSTM 

Bi-LSTM can utilize both past information and 
future information at a specific time. We intro-
duce the Bi-LSTM model for comparing the 
context influence. The model description is as 
follows: 

ℎ! ,𝐶! = 𝐿𝑆𝑇𝑀 𝑋! , ℎ!!!,𝐶!!!        (9) 
ℎ! ,𝐶! = 𝐿𝑆𝑇𝑀 𝑋! , ℎ!!!,𝐶!!!      (10) 

ℎ! = ℎ! , ℎ!                        (11) 
𝑓!! 𝑋 = ℎ!, ℎ!,… , ℎ!                 (12) 

  ℎ! is the hidden state of the forward LSTM 
layer at time step t, ℎ! is computed the same 
way as ℎ! except the input X is processed in 
reverse order. We use two direction hidden fea-

ture ℎ! for label prediction. 

2.3 Bi-LSTM with local Attention  

In [4], the author proved that deeper Bi-LSTM 
is useful for predicting comma and period while 
modeling the context of output punctuation la-
bels with CRF would harm the performance, 
since auto punctuation is a highly imbalanced 
task and there exist weak relationships among 
the labels. This is explicable: the appearance of 
a comma in a sentence is not much relevant to 
other commas or periods. LSTM methods can 
make use of context information, but there also 
exists the label interference during the optimiz-
ing process due to the information flow between 
different time steps. The loss of one label can 
affect the other time step label prediction.  
  Inspired by this, we want make better use of 
the word context while decoupling the label 
context. Attention mechanism [9] can help ad-
dress this problem. Our Bi-LSTM with local 
attention model is defined as: 

    𝑠! = 𝑎 ℎ! , ℎ! ℎ!
!!!!!!!
!!!!!!!!!

            (13) 

  𝑒 ℎ! , ℎ! = 𝜈!! tanh 𝑊!!ℎ! + 𝑈!!ℎ!   (14) 

𝑎 ℎ! , ℎ! =
𝑒 ℎ! , ℎ!

𝑒 ℎ! , ℎ!
!!!!!!!
!!!!!!!!!

        (15) 

𝑓!! 𝑋 = 𝑠!, 𝑠!,… , 𝑠!             (16) 

  We use the current Bi-LSTM hidden state ℎ! 
and all the hidden states fall in the window cen-
tered at t (window size 𝑙!) to calculate their 
similarities 𝑒 ℎ! , ℎ! . Then the alignment score 
𝑎 ℎ! , ℎ!  is calculated by softmax function. 
The finally context vector is the weighted aver-
age over the in-window hidden states. If the 
sliding window crosses the sentence boundary, 
we choose to ignore the outside part. The de-
tailed structure of this model is presented in 
Figure 1. This mechanism can automatically 
search the most relevant features within the 
window size 𝑙! for label prediction at time step 
t. It’s called local attention and was proposed in 
[11] for encoder decoder problem. Compared to 
global attention, it requires less memory and 
more computationally efficient.  
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Figure1: Bi-LSTM with local Attention 

  [5] also used attention mechanism, but in a 
different way. They forward Bi-GRU hidden 
state to another GRU, and calculate the atten-
tion based on previous GRU hidden state and all 
Bi-GRU hidden states. Using another GRU 
cause their output labels still have interference 
with each other in time order.  

3. Experiments 
3.1 Data Preparation 

Before training, we extract the high frequency 
characters as our vocabulary dictionary (size 
6797). We add “[Alpha]”, “Num” to our vocab-
ulary, replace all English words with “Alpha” 
and all numbers with “Num” during prepro-
cessing. This can avoid English words or num-
bers been split by mistake during prediction 
process. We also use “Unk” to present all un-
known characters in sentences. Then we extract 
the character–label sequence pairs to form our 
data set.  
 

Dimension Train Set Test Set 
No. of sentences 23592151 10000 
Average length 27.5 27.5 

Characters 650009658 275484 
Comma 29237800 12313 
Period 18791497 7927 

Question 1598499 697 
Exclamation 3205905 1381 

Table 1: Data Set details 
  We use the punctuated twitter data as train set 
and test set. The description of our data sets is 
detailed in Table 1. The train set is composed 

by 23.5M sentences, and the test set has10k 
sentences. The average length of sentences in 
both sets is 27.5. In our data sets, comma holds 
4.5%, period holds 2.89%, question holds 
0.25%, and exclamation holds 0.49%.  

3.2 Evaluation metrics 

We use conventional Precision, Recall, and 
F1-score as model evaluation metrics. For 
over-all metric, we removed the null options 
and focus on evaluating punctuation marks as [6] 
did. We also calculate precision, recall and 
F1-score for comma, period, question and ex-
clamation respectively in similar way.  

3.3 Results 

Table 2 and Table 3 show our experiments re-
sults in detail. FC-LSTM-w represents the Fu-
ture Context LSTM model and the adjacent 
number indicates the future window size. 
Bi-LSTM-A stands for Bi-LSTM with local at-
tention model (attention window size 5). For 
comma prediction, Bi-LSTM-A method out-
performs all the others. It improves 1.74% 
F1-score compared to Bi-LSTM, and 5.72% 
F1-score to FC-LSTM-w4. For question and 
exclamation, FC-LSTM-w2 performs best with 
highest recall and F1-score, but relatively lower 
precision. There is a reciprocal relationship 
among the results of question, exclamation and 
period, since they all indicate sentence ends and 
are always falsely transformed from one to the 
other. For end of sentence punctuations, we just 
need past information since they are the ends of 
the sentence. So FC-LSTM performs best. The 
future window can help distinguish them from 
comma. But for comma, the better representa-
tion of both directional can achieve better re-
sults, so Bi-LSTM-A performs best by intro-
ducing feature importance in attention window.  
  In addition, our new model prefers to trans-
form questions and exclamations to periods, 
which decreases the period precision. In prac-
tice, it’s acceptable. To explain the decrease of 
recall, we note that most question and exclama-
tion sentences are longer than 10 while our at-
tention window size is 5, after attention calcula-
tion, it cannot capture the information that is too 
far away from the center word. Experiments on 
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attention window size can be explored in further research. 
 

MODELS COMMA 

 

PERIOD 

 

QUESTION 

 Pr.     Re.    F1 Pr.     Re.    F1 Pr.     Re.    F1 

FC-LSTM-w1 73.64 53.59 62.04 83.54 96.28 89.46 69.46 47.63 56.51 

FC-LSTM-w2 74.16 59.39 65.96 83.77 96.20 89.56 70.58 49.21 57.99 

FC-LSTM-w4 74.22 61.88 67.49 83.61 96.39 89.55 69.12 47.20 56.10 

Bi-LSTM 75.15 66.34 70.47 82.93 97.57 89.65 71.72 44.76 55.12 

Bi-LSTM-A 77.77 67.38 72.21 79.17 99.90 88.34 100.0

0 

0.14 0.29 

Table 2: Comma, Period, Question results on Twitter Test set. 

MODELS EXCLAMATION 

 

NO-PUNC 

 

PUNC-AVER. 

PUNC-AVER. 

 

 

Pr.     Re.    F1 Pr.     Re.    F1 Pr.     Re.    F1 

FC-LSTM-w1  54.40 15.21 23.77 97.77 99.06 98.41 77.91 66.19 71.58 

FC-LSTM-w2 54.11 16.22 24.96 98.04 98.99 98.51 78.06 69.48 73.52 

FC-LSTM-w4  54.31 15.06 23.58 98.16 98.95 98.55 77.96 70.78 74.20 

Bi-LSTM 61.83 10.79 18.37 98.37 98.93 98.65 78.40 73.32 75.77 

Bi-LSTM-A 100.0 0.14 0.29 98.42 99.06 98.74 78.46 72.69 75.47 

Table 3: Exclamation, PUNC-AVER, No-Punc results on Twitter test set. 

4. Conclusion 
In this paper, we compared different ways of 
introducing context information in auto punctu-
ation tasks. Our Bi-LSTM with local attention 
model performs best among all the models. Fu-
ture study can be conducted on improve the at-
tention method, for example, the similarity cal-
culation, attention center word position selec-
tion.  
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