)

1=

BALEL S SEoARMEIR RS HKEH CHE (201843)

Juman-++4 v2: A Practical and Modern
Morphological Analyzer

Arseny Tolmachev Sadao Kurohashi

Kyoto University

arseny@nlp.ist.i.kyoto-u.ac.jp, kuro@i.kyoto-u.ac.jp

1 Introduction

Japanese language has no natural delimiters between
words and the first step in Japanese NLP is usually
a morphological analysis, which consists of several
subtasks. The most representative ones are segmen-
tation (finding morpheme boundaries), and part of
speech (POS) tagging. A morphological analyzer is
useful from a practical point of view only if it is fast
as well as highly accurate in its analysis.

Juman++ morphological analyzer [1] (referred
also as V1), which uses a combination of a linear
model and a neural network-based language model
to compute a semantic plausibility of a segmenta-
tion. Juman++ has achieved state-of-the-art anal-
ysis accuracy on Jumandic (JUMAN dictionary and
segmentation standard) based corpora, and drasti-
cally reduced the number of intolerable analysis er-
rors. Unfortunately, its execution speed was ex-
tremely slow. The execution speed has limited the
practical usage of Juman++.

We have reimpelmented the core idea of Juman++
and have released it as Juman++ v2! (referred also
as V2). Our implementation is more than 250
times faster than V1, and achieves better accu-
racy than V1.

V2 is implemented with modern C++, with in-
tention to be used not only as a program, but also
as an embeddable library, usable in a multi-threaded
environment. Additionally, V2 is not hardwired to
a particular dictionary and can use partially anno-
tated data for training. This makes Juman++ v2 a
practical analyzer suitable for large-scale usage.

The reasons for the speedup come from two direc-
tions: algorithmic improvements and low level opti-
mizations which enabled V2 to use CPUs more ef-
fectively. Both of them are equally important to the
resulting speed improvement. The main low level
optimizations are:

e Use struct-of-arrays object layout for frequently
used objects to improve data locality and cache
usage.

e Generate specialized C++ code to perform fea-
ture extraction based on a dictionary and fea-
ture templates description. The generated spe-

Ihttps://github.com/ku-nlp/jumanpp

— 917 —

cialized feature extraction code drastically re-
duces the number of branches in the feature ex-
traction code path and enables the use of other
compiler optimizations like inlining and identi-
cal subexpression folding.
e Prefetch the linear model weights to work
around the DRAM latency.
e Vectorize and batch the RNNLM.
Algorithmic improvements are discussed in more de-
tail in the following section.

2 Algorithmic Improvements

Juman++ is a lattice-based analyzer. It works by
assigning a score s to each path through the lattice.
The path with the highest score is considered to be
the analysis result. The score s consists of two com-
ponents: a linear model score s* and RNNLM score
sBNN which are combined as s = s' + a(s®NN + 3),
where o and 3 are scale and bias hyperparameters
respectively. The RNNLM score is a log-probability
score outputted by the language model.

The current version of V2 does not contain direct
RNNLM-related algorithmic improvements. There
are two algorithmic improvements for the linear
model part and one which is shared between the both
models.

2.1 Linear Model

The linear score is defined as

s' =Y £(t0,p)w,

toep

where f(¢0,p) is an indicator vector which contains
features, extracted for a node ¢0 in a path p and w is
a model weight vector. Weights are learned using the
Soft Confidence Weighted [4] algorithm. We denote
a node t0 if it starts on the character boundary we
are considering at the moment. We also call 0 nodes
right because they are to the right of the boundary.
Nodes, which end at the boundary are referred to as
left or t1. The previous nodes of tl1s are called ¢2.
See Figure 1 for the illustration.

Contents of the feature vector ¢(t0,p) consist of
concrete features, which are computed using the
node t0 itself and up to two previous nodes (t1 and

All Rights Reserved.

Copyright(C) 2018 The Association for Natural Language Processing.

Boundary

2570
B2

/ %*7'3\ # L

t2)
e
B0S~ 2 & 7 9
N\

BB My fr

Figure 1: A lattice construction step at a character
boundary.

Table 1: Dictionary and model sizes

Analyzer Dict (MB) Model (MB)
Raw Dictionary 256 -
MeCab 311 7.7
KyTea - 200
V1 445 135
V2 158 16

t2) on the path p. These concrete linear model fea-
tures are computed using ngram feature templates.
A feature template consists of a pattern for each ap-
plicable node. A pattern combines several primitive
features inside a lattice node. Those primitive fea-
tures could be:

1. Dictionary fields like surface form or POS tag;

2. Surface characters;

3. Surface character types;

4. Information from unknown word extractors.
For example, a trigram template (POS, SUB)
(POS) (BASEFORM) has combination of POS
and sub-POS fields (or a POS, SUB pattern) for
t2, only POS for ¢t1 and a dictionary form of the
node t0.

Patterns and primitives are combined using hash-
ing, both by V1 and V2. V1 does not explicitly con-
sider patterns and computes the whole ngram feature
from the primitives each time. However, different
ngram features often share patterns, and because of
this the V2 computes patterns only once for each
node.

In addition to this, paths traverse the same lattice
nodes. Trigram features, for instance, would con-
tain a different combination of (¢2, ¢1, t0) for each
possible path. Bigram and unigram features will be
shared between some paths. V1 redundantly com-
putes those features, but V2 does not. This removal
of redundancy gave speed increase around four times.

2.2 Dictionary

Most of the current Japanese morphological analyz-
ers store the dictionary as a row database with a
trie-based index for the fast lookup. When trying
to use the dictionary fields as features the analyzer

— 918 —

Column Storages
15 2152 H 3 i
5Bh&EA (1%)5Bh5R (%) 21
3EAR *

bs #@E EAXE 9 0 0
b BiEGE) *x 3 4
T\ EE BAR 15 0
b BrE () x 9 4

Raw Dictionary

o O

Field Pointers

Figure 2: Dictionary as a column database. Strings
in the column storage are prefixed by their lengths.

needs to either perform string manipulations at run-
time, which is slow, or to convert entries to unique
identifiers by hashing or other means.

V2 instead stores the dictionary as a column-based
database, compactly representing the dictionary field
data as integers. An example is shown on Figure 2.
A raw (or row-based) dictionary has its column data
deduplicated and stored separately as column stor-
age. Field entries themselves are turned into pointers
into the column storage. Pointers uniquely identify
field values and are used as identifiers for the entries.

The actual dictionary implementation uses
LEB128 encoding for integers. It allows to encode
small numbers into small number of bytes. We
exploit this fact further by sorting the column
values using their frequency inside the dictionary,
making the pointers to frequent entries to have
smaller values and require fewer bytes to encode.
This combined with the deduplication made by the
column database format, causes the V2 dictionary to
use significantly less space than other morphological
analyzers.

The compiled dictionary and model sizes for the
different morphological analyzers are shown in the
table 1. All dictionaries except KyTea’s [2] were built
using the same conjugation-expanded Jumandic. For
KyTea we used only deduplicated entries consisting
of surface, POS and sub-POS fields. Actually, about
45% (71MB) of the V2 dictionary is used by the trie
index, so the compression ratio of dictionary entries
is very high: the compiled version uses about three
times less space than the raw dictionary.

Finally, the dictionary format is memory map-
pable and does not require any post-processing after
the dictionary load, which makes V2 startup time
non-noticeable. The dictionary implementation re-
duced the analysis time approximately three times.

2.3 Search Space Trimming

Because Juman++ uses trigram features, the beam
searching procedure has to deal with combinatorial

All Rights Reserved.

Copyright(C) 2018 The Association for Natural Language Processing.

FLD

(a) Left global beam. k = 2. Top left paths are dis-
played in orange. Remaining paths are displayed in solid
gray. Non-considered paths are displayed as dashed blue
arrows. Considered paths are solid blue.

(b) Right global beam. | = m = 1. A top left path and
a top right node is displayed in green. Orange paths via
the boundary were used for scoring right nodes. Solid
blue path via the boundary connects the remaining k& — [
top left paths the top right nodes. Dashed blue paths are
not considered.

Figure 3: Trimming the search space using the global beams.

explosion caused by higher order ngram features. V1
uses local beams of width j, meaning that only j in-
coming paths with top scores are kept. The rest of
the paths are discarded. The problem is that those
paths are discarded after evaluating their scores and
the number of evaluations can still be rather large.
Most of the sentences have several boundaries which
have 20-30 both left and right nodes. Almost all
those paths are useless and we don’t want to con-
sider them in the analysis at all.

The first improvement is to use only top k paths
ending on t1 nodes instead of using all £1 paths. Con-
nections for the remaining paths are not considered.
We refer to this process as left global beam. The
application of the left global beam is shown on Fig-
ure 3a.

The second improvement is the right global beam,
displayed on Figure 3b. As the first substep, we use
top I(< k) t1 paths to compute scores of right nodes.
After that, we evaluate the connections from the re-
maining k — [left paths to the top-scored m right
nodes. The rest of connections are not considered.

Figure 4 shows the F1 score on cross-validation
over Kyoto University (KU) corpus when varying the
global beam parameters. It can be seen that the
accuracy of the models does not fall even if using
very small global beam sizes. When the beam size
at training is very small, the model can not correctly
learn the weights for trigram parameters, lowering
the accuracy on larger beam sizes. On the other
hand, when the training beam size is too large, then
the model losses accuracy on small beam sizes. Mod-
els which are trained with a sufficient beam size have
a similar test accuracy if the test beam sizes were
equal or greater than the training ones. Search space
trimming gave speedup around four times with the
beam parameters described in the evaluation section.

— 919 —

99.21
99.01
98.8 ! / —-— train p=1
a —-— train p=2
98.61 ! —— train p=3
—— train p=4
98.41 —— train p=5
—-— train p=6
1 2 3 4 5 6

test p

Figure 4: Cross-validation test F1 score average on
KU corpus for POS tags when using different global
beam parameters £k = [= p, m = 1. Red dotted
line at the top is F'1 score of a model without global
beams.

3 Performance Comparison

We compare both the speed and the accuracy of
five different morphological analyzers: JUMAN?Z,
MeCab?, KyTea, Juman++ (V1) and Juman++
(V2). For both versions of Juman++ we report re-
sults both using and not using neural network lan-
guage model (noRNN).

Analysis speed We used a desktop computer with
Intel i7-6850K CPU, 64GB of RAM and Ubuntu
16.04 Linux for analysis speed comparison. The
models were trained from scratch using the same Ju-
man-++ dictionary, Kyoto University*and KWDLC?
corpora for all morphological analyzers except JU-
MAN, which is not trainable. For KyTea we also

2http://nlp.ist.i.kyoto-u.ac.jp/index.php?JUMAN

Shttp://taku910.github.io/mecab/

4 http://nlp.ist.i.kyoto-u.ac.jp/index.php?5i#i K ¥
THFANI—=INA

5 http://nlp.ist.i.kyoto-u.ac.jp/index.php?KWDLC

All Rights Reserved.

Copyright(C) 2018 The Association for Natural Language Processing.

Table 2: F1 scores of morphological analyzers on Jumandic-based corpora. Seg is segmentation; +Pos is correctly
guessing the POS-tags after segmentation; +Sub is correctly guessing sub-POS tags (fll73 %) as well.

Kyoto University KWDLC
Analyzer Seg +Pos +Sub Seg +Pos +Sub
JUMAN 98.41 9720 9548 98.10 97.01 95.76
KyTea 99.12 98.16 97.28 98.00 96.75 95.46
MeCab 99.14 9858 97.62 98.28 97.61 96.23
V1noRNN 98.94 9842 97.06 97.66 96.95 95.51
V1 RNN 99.38 9895 97.53 98.41 97.87 96.45
V21noRNN 9944 9898 97.80 9844 97.79 96.42
V2 RNN 99.51 99.05 97.83 98.67 98.02 96.62

Table 3: Analysis speed of morphological analyzers.

Analyzer Speed (sents/sec) Ratio
JUMAN 8,802 1.00
MeCab 52,410 0.17
KyTea (Jumandic) 4,892 1.79
KyTea (Unidic) 1,995 4.41
V1 noRNN 27 328.82
V1 RNN 16 535.72
V2 noRNN 7,422 1.18
V2 RNN 4,803 1.83

report the throughput using the Unidic-based mod-
els, which are available for download from the KyTea
website. Jumandic-based model for KyTea was
learned using default parameters. We used a con-
catenation of POS and sub-POS tags as the only tag
for the Jumandic-based KyTea model. V1 uses local
beam width j = 5. V2 uses j =5, k =6, =1,
m = b beam parameters.

Table 3 shows the analysis speed of the considered
morphological analyzers and speed ratio as compared
to the JUMAN. The speed was measured by analyz-
ing 50k sentences from a web corpus. Each analyzer
was launched five times and the median time was
used for computing the analysis speed. V2 noRNN
is only 20% slower than the JUMAN, while having
considerably complex model. V2 RNN has 1.8 times
the execution speed of JUMAN and is more than 250
times faster than V1.

Accuracy Table 2 shows the F1 score for both KU
and KWDLC corpora. A concatenation of training
sections of both corpora was used to train a com-
bined model; the reported scores are for the test sec-
tions. MeCab and V2 have hyperparameters opti-
mized using Spearmint [3]. The V2 POS score here
is lower than those on figure 4, because that exper-
iment uses the cross-validation splitting instead of
standard train/test one.

V2 RNN achieves higher F1 score than the previ-
ous SOTA of V1 RNN. Even the scores of V2 noRNN
are higher in some cases than those of V1 RNN. Note
that V1 noRNN score is lower than of even JUMAN,

— 920 —

so we hypothesize that the number of training it-
erations of the V1 linear model was not sufficient.
However it was difficult to increase it because of ex-
tremely slow analysis speed.

With the V2, we could find an optimal number of
iterations for learning the linear model with the best
accuracy. The other reason for improved accuracy
for V2, is that compared to V1, it uses surface char-
acter and character type features. Finally, V2 treats
compatible unknown words as gold nodes during the
training procedure. V1 was always creating virtual
nodes for words which did not have dictionary en-
tries, ultimately not learning how to treat unknown
words.

4 Conclusion and Future Work

We present Juman++ V2: a modern and practical
morphological analyzer for Japanese. It achieves a
new state-of-the-art accuracy for both Kyoto Univer-
sity and KWDLC corpora while drastically reducing
the analysis time. Juman++ V2 can be used as a
library, can use both fully and partially annotated
data for training and is not hardwired to a specific
dictionary.

We plan to create a Unidic version of Juman+-+
V2 and use it to annotate the readings of Jumandic-
based corpora.

References

[1] Hajime Morita, Daisuke Kawahara, and Sadao Kuro-
hashi. Morphological analysis for unsegmented
languages using recurrent neural network language
model. In EMNLP, pages 2292-2297, 2015.

[2] Graham Neubig, Yosuke Nakata, and Shinsuke Mori.
Pointwise prediction for robust, adaptable japanese
morphological analysis. In ACL, pages 529-533, 2011.

[3] Jasper Snoek, Hugo Larochelle, and Ryan P Adams.
Practical bayesian optimization of machine learning
algorithms. In NIPS, pages 2951-2959, 2012.

[4] Jialei Wang, Peilin Zhao, and Steven CH Hoi. Soft
confidence-weighted learning. ACM TIST, 8(1):15,
2016.

All Rights Reserved.

Copyright(C) 2018 The Association for Natural Language Processing.

