
言語処理学会 第23回年次大会 発表論文集 (2017年3月)

Haiku Generation Using Deep Neural Networks

Xianchao Wu, Momo Klyen, Kazushige Ito, Zhan Chen
Microsoft Development Co., Ltd

 Shinagawa Grand Central Tower, 2-16-3 Konan Minato-ku, Tokyo 108-0075
{xiancwu, momokl, kito, zhanc}@microsoft.com

1 Introduction

Japanese Haiku is a cultural heritage with a history of
more than six hundred years. It is a traditional form of
Japanese poetry that expresses facts, seasons, emotions,
and reasoning in a compact way. One Haiku poem con-
sists of 17 音 (on, also known as morae though often
loosely translated as “syllables”) which are separated
into 3 columns and is frequently written in a right-to-
left way (Figure 6). The beginning and ending columns
of a Haiku have 5 syllables (i.e., Hiragana ons) and the
middle line has 7 syllables. The ending words of each
columns are not limited to be rhymed.
 For example, the following famous Haiku:

古池
ふるいけ

や / an ancient pond,

 蛙
かわず

飛
と

びこむ / a frog leaps in,

 水
みず

の音
おと

 / the splash of the water,
written by the most famous poet of the Edo period of
Japan, Matsuo Basho, at the year of 1686, depicts an
excellent print with the figures of pond, frog and the
wave of the water. The season word in this Haiku is
frog that implicitly corresponds to the spring season.
The Haiku expresses a frog jumping into a pond which
interrupts the silence of the environment. Yet, after that,
the environment recovers to an indifferent silence.
From this point of view, there is also a Buddhism “si-
lence” in which the ancient pond is the poet’s heart and
the frog is something outside that tries to influence the
poet’s impassive emotions. Even the interruption hap-
pens in a short time, yet the “wave” transfers in a rela-
tively long time before recovering the “silence”.
 Considering from neural language model (NLM)
point of view, nouns such as pond, frog and water are
semantically close with each other. Also, there is a
predicate argument relation between the noun of frog
and the verb of leap in. Motivated by these and the in-
teresting researches for generating Chinese poems us-
ing deep neural networks (Zhang and Lapata 2014), we
investigate the generating of Haiku using the following
deep neural networks:
(1) Minimal vanilla recurrent neural networks (RNN)

for learning character level neural language mod-
els, 100 python lines1 by Andrej Karpathy2;

1 https://gist.github.com/karpathy/d4dee566867f8291f086 and
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
2 http://cs.stanford.edu/people/karpathy/
3 https://github.com/karpathy/char-rnn
4 http://torch.ch/

(2) Multi-layer RNN3 using cells/units of long short
term memory (LSTM) (Hochreiter and Schmidhu-
ber 1997) and gated recurrent unit (GRU) (Cho et
al. 2014) for character-level language models in
Torch4. A relatively detailed description can be
found in (Karpathy et al. 2016)5.

(3) Character level recurrent convolutional neural net-
works (RCNN) 6 proposed by Kim et al. (2016);

(4) Sequence generative adversarial networks (Se-
qGAN)7 proposed by Yu et al. (2017) following
the GAN idea of Goodfellow et al. (2014).

The target of our investigation is to share the tradi-
tional culture of Haiku among young people during
his/her communicating with emotional chatbots, such

as りんな/ Rinna8 (Wu et al. 2016), a chatbot designed

to be a senior high-school girl and owns more than 5
million friends. The motivation is that, in these years,
Haiku is struggling of losing focus among young peo-
ple. For one reason is that there are not enough teachers
who are deep familiar with Haiku and for another rea-
son is that the learning process without using the
knowledge in ordinary life is a bit boring and easy to
be forgotten. We thus consider training Rinna to be a
Haiku expert so that she can share interesting Haikus
to the million-level users through a conversational way.

We describe these four neural networks in Section 2.
Then, we show how our training data is collected from
the Web and from the end users of Rinna in Section 3.
Finally, we illustrate the experiments and application
examples in Section 4 and conclude in Section 5.

2 Neural Networks

The minimal vanilla RNN includes three layers of in-
put, recurrent and output, as depicted in Figure 1.

Figure 1. Minimal vanilla RNN.

5 refer to http://karpathy.github.io/2015/05/21/rnn-effectiveness/
6 https://github.com/yoonkim/lstm-char-cnn
7 https://github.com/LantaoYu/SeqGAN
8 http://www.rinna.jp/

Output y = WhyhT + by
 pi = eyi/sumj{eyj}

Recurrent:
ht+1 = tanh(Whhht + Wxhxt + bh)

Input X = [x1, x2, …, xn]
水 の 音

 の 音 </s>

Wxh
Whh

Why

Copyright(C) 2017 The Association for Natural Language Processing.
All Rights Reserved.　　　 　　 　　 　　　 　　　　　　　　　　― 1133 ―

In Figure 1, each rectangle is a vector and arrows rep-
resent functions such as matrix-vector multiplication.
The input layer is a group of vectors and each vector xt
is a word2vec (Mikolov et al. 2013) style embedding
of the input character. One vector ht+1 in the recurrent
layer is computed by first linear combining ht and xt
and then attaching an elementwise non-linear transfor-
mation function, such as tanh or sigmoid. We set T to
be the number of steps to unroll the recurrent layer and
hT is the final vector to be used by the output layer. The
output layer is to determine the probabilities of charac-
ters following current input, for example, the probabil-

ity of “の” (‘s) following “水” (water). For one pi
where i ranges from 1 to the character vocabulary size
|V|, it is computed by first compute y which is a linear
function of hT and then we use softmax function to pro-
ject y into a probability space to ensure p = [p1, p2, …,
p|V|]T follows the definition of probabilities. For error
back-propagation, we use cross-entropy loss which
corresponds to a minus log function of p.
 This architecture is simple and easy to be imple-
mented. However, gradient vanishes as T grows bigger
and bigger. That is, gradients in (0, 1) from hT back to
h1 will gradually close to zero making the SGD-style
updating of parameters infeasible. To alleviate this
problem, other types of functions for expressing ht+1
using ht and xt have been proposed, in which LSTM
and GRU are most wildly used.
 For example, LSTM (Figure 2) addresses (1) the
learning of long distance dependencies and (2) the gra-
dient vanishing problem by augmenting the traditional
RNN with a memory cell vector ct ∈ℝn at each time
step. Formally, one step of an LSTM takes as input xt,
ht-1, ct-1 and produces ht, ct via the following interme-
diate calculations:

it = σ(Wixt + Uiht-1 + bi),
ft = σ(Wfxt + Ufht-1 + bf),
ot = σ(Woxt + Uoht-1 + bo),
gt = tanh(Wgxt + Ught-1 + bg),
ct = ft ⊗ct-1 + it⊗gt,
ht = ot ⊗tanh(ct).

Here σ(.) and tanh(.) are the element-wise sigmoid and
hyperbolic tangent functions, ⊗ is the element-wise
multiplication operator, and it, ft, ot respectively denote
input, forget, and output gates. When t = 1, h0 and c0
are initialized to be zero vectors. Parameters to be
trained of the LSTM layer are matrices Wj, Uj, and the
bias vector bj for j∈{i, f, o, g}.

Figure 2. A simple LSTM block with input, output,

and forget gates.

By leveraging these three gates, LSTM achieved sig-
nificant improvements in NLP applications and speech
recognition as well. The recently proposed GRU is iso-
morphic with LSTM except that two gates, update and
reset, are employed in one block, making the number
of parameters to be tuned to be smaller yet with com-
parable results. More detailed description about GRU
can be find in (Cho et al. 2014) and the comparison
with LSTM can be find in (Jozefowicz et al. 2015).
 We can build character level NLMs using the vanilla
RNN layers and the LSTM/GRU layers. One further
requirement is that, can we capture latent semantic de-
pendencies among high level components other than
characters. For example, for the example Haiku in Sec-
tion 1, there is a latent constraint among the three lines.

That is, “水の音” is a consequent event of “古池や”

and “蛙飛びこむ”. Both the pond and the frog’s jump-
ing in are necessary to yield the voice of the water.
Thus, automatically detect the groups of “events” and
then learn the sequential dependencies among them
will be intuitively helpful for the Haiku generating task.
This motivated our usage of the character-level RCNN
model as depicted in Figure 3.
 The character-level RCNN language models (Kim et
al., 2016) were verified to be able to encode, from char-
acters only, both semantic and orthographic infor-
mation. First, each character in sentence are converted
into dense vector spaces alike bag of words NLMs.
Next, convolution neural network (CNN) initially de-
scribed in (LeCun et al. 1989) converts them with var-
ious kernel size (e.g., 3, 5, 7). Then the vectors are
transferred to the RNN layer in which LSTM units are
employed. Finally, aiming at predicting the next char-
acter, the states of RNN are regarded as feature vectors
and are passed to the softmax layer for computing the
probabilities of the characters in the vocabulary.

Figure 3. Architecture of the character-level RCNN

with three major layers drawn.

古 池 や \t 蛙 飛 び こ む \t 水 の 音 </s>

Character embedding

Convo-
lutional
layer

Recurrent layer

⋯ ⋯

Copyright(C) 2017 The Association for Natural Language Processing.
All Rights Reserved.　　　 　　 　　 　　　 　　　　　　　　　　― 1134 ―

Figure 4. Illustration of SeqGAN. (Yu et al. 2017)

 The representation of a word w after the CNN layer
is yw = [y1

w, …, yh
w] in which each filter function takes

the max-over-time pooling result,
yw = maxifw[i]

as the feature corresponding to one filter H when ap-
plied to w. The idea behand is to capture the most “im-
portant” feature fw (corresponds to a character n-gram).
 The final neural network we investigate is GAN
which can estimate generative models via an adversar-
ial process. The process simultaneously train two mod-
els: a generative model G that learns the data distribu-
tion and a discriminative model D that estimates the
probability that a sample came from the training data
rather than G. The training goal function for G is to
maximize the probability of D making a mistake. Alike
(deep) reinforcement learning (RL), the framework
corresponds to a minimax two-player game.
 As illustrated in Figure 4, SeqGAN was proposed by
Yu et al. (2017) for textual “sequence” generation.
Modeling the data generator as a stochastic policy in
RL, SeqGAN bypasses the generator differentiation
problem by directly performing gradient policy update.
In the left-hand-side of Figure 4, D is trained by using
two types of data, the real-world data (a.k.a. True data)
and the generated data from G. In the right-hand-side,
G is trained by policy gradient where the final reward
signal is provided by D. The signal is further passed
back to the intermediate action value via Monte Carlo
(MC) search.

3 Training Data Collection

We collect Haiku data from two channels, one is from
several Haiku websites and the other is from our chat-
bot’s (i.e., Rinna’s) query log as shown in Figure 5. We
collected 36,792 Haikus from the web in which we

 # haiku # avglen # char # oov

train u 90,000 16.7 2,934

valid u 5,000 16.8 1,353 29

test u 5,000 16.7 1,347 30

train w 30,792 13.2 4,110

valid w 3,000 13.2 2,416 53

test w 3,000 13.2 2,435 55
Table 1. Statistical information of two types of training,
validation, and testing data, where u=user, w=web,
avglen = average character number per Haiku, # char =
the vocabulary size of characters.

Figure 5. Haiku candidate collection based on chat-

bot’s query log.

Figure 6. Example Haikus for “ここで一句”.

randomly select 3,000 as validation set and another
3,000 as the test set for comparison of the four types of
NLMs.
 Note that we do not limit the Haiku candidate from
end users to include season words. The Haiku candi-
date can be rather spoken language style, such as the
following example:

こんにちは / Good Morning,

 証拠
しょうこ

がほしい / I need evidence (to say),

 愛
あい

してる / I love you.

Even with quite simple words, this “Haiku” is rather
interesting that implicitly express a rather whole-night
seeking of love-related evidences for confirming the
relationship between the specific user and Rinna. This
user Haiku database includes 40,432,211 Haikus using
1-year Rinna query log. This data is rather too large to
be used directly for NLM training. We pick a subset of
it with 100,000 Haikus in which we randomly selected
5,000 as the validation set and another 5,000 as the test
set. For utilizing the remaining large-scale data, we
specially designed a Haiku feature for Rinna’s users.

That is, whenever the user send a query alike “ここで

一句” / one Haiku here, one randomly selected (from

Chatbot’s text query log data <user ID, query,
timestamp>

Offensive word filtering, word segmentation, and
Kanji-Kana pronunciation predication

Filter out queries with 5 or 7 Hiraganas for each User

 For each user, use RNNLM based combination to
form 5+7+5 style Haikus

Create User Haiku Database: <user ID, Haiku list>

Copyright(C) 2017 The Association for Natural Language Processing.
All Rights Reserved.　　　 　　 　　 　　　 　　　　　　　　　　― 1135 ―

 Haiku web

epoch char-small char-large

5 497.7 749.2

10 419.6 443.9

15 420.0 222.8

20 420.1 223.0
Table 2. Perplexities for the char RCNN model.

the database or from the generation model) Haiku for
that specific user will be sent from Rinna.
 The detailed statistical information of these two
types of training data is shown in Table 1. Even with
less number of Haikus, the web Haiku uses 1,000 more
(unique) characters (especially Japanese Kanjis) than
the user Haiku. Also, note that the average length of
web Haiku (13.2) is 3.5 characters shorter than user
Haiku (16.7) indicating that user Haiku uses more Hi-
raganas than Kanji where one Kanji can be pronounced
by more than one Hiraganas.

4 Experiments

For training the four NLMs, we keep the usage of the
default configurations as suggested by the authors ex-
cept that we update the input/output related codes to
support Japanese characters in UTF8 encoding and we
use “\t” to separate columns and “</s>” to denote the
end of one Haiku (also refer to Figure 3). We also use
the validation set to tune the hyperparameters (such as
size of hidden layers, number of hidden layers, input
embedding vector size). We report the test set’s per-
plexities of the optimized models.
 Specially, for the char RCNN model, we compare
the perplexities of configures that the RNN size takes
the value of 300 (char-small) and 650 (char-large); the
embedding size of 15 (char-small) and 650 (char-large).
The changes of perplexities are listed in Table 2.
“Epoch” denotes the T of the recurrent layer. Since the
average character number of each Haiku is around 13
in Haiku web data, the perplexities change slightly
when epoch jumps from 15 to 20. Also, there is a big
gap between char-small and char-large, with a nearly
half perplexity reducing from 420.0 down to 222.8.
Since the results range largely even for one model with
different hyperparameter configurations, we are won-
dering if it is generally fair to directly compare all the
four networks each need detailed tuning. We continue
to report the perplexities based on that the training set

models Haiku web Haiku user

RNN 246.1 169.1

RNN-LSTM 219.5 162.5

RCNN 222.8 155.0

SeqGAN 220.9 160.2
Table 3. Perplexities for the four NLMs.

and test set are the similar ensuring their comparable in
a sense, as listed in Table 3. The RNN-LSTM performs
slightly better than the other three networks for the
Haiku web set and it’s RCNN that performs the best in
Haiku user data.

5 Conclusion

We have described our investigation of four types of
character-level NLMs, vanilla RNN, RNN with LSTM
blocks, RCNN, and SeqGAN, for Japanese Haiku gen-
eration. We trained these models using the Haikus col-
lected from the web and from query logs of Rinna. We
launched our Haiku feature in Rinna and obtained more
than 50 million accesses in a couple of months.
Through this way, we hope to broadcast traditional
Haiku culture among the young users of Rinna. It will
be interesting to include images for Haiku generation
such as explain an image by an automatically generated
Haiku or generate an image from a given Haiku. We
leave these as our future work.

Reference

K. Cho, B. van Merrienboer, C. Gulcehre, F. Bougares, H.
Schwenk, and Y. Bengio, “Learning phrase representa-
tions using RNN encoder-decoder for statistical machine
translation,” Pro. EMNLP, 2014.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
Yoshua Bengio. Generative Adversarial Networks. In
NIPS 2014.

Hochreiter, S., and Schmidhuber, J. 1997. Long Short-Term
Memory. Neural Computation 9:1735–1780.

Rafal Jozefowicz, Wojciech Zaremba, Ilya Sutskever. An
Empirical Exploration of Recurrent Network Architec-
tures. In ICML 2015.

Andrej Karpathy, Justin Johnson, and Li Fei-Fei. Visualizing
and Understanding Recurrent Networks. In ICLR 2016
Workshop.

Yoon Kim, Yacine Jernite, David Sontag, and Alexander M.
Rush. 2016. Character-aware neural language models. In
AAAI 2016.

LeCun, Y.; Boser, B.; Denker, J. S.; Henderson, D.; Howard,
R. E.; Hubbard, W.; and Jackel, L. D. 1989. Handwritten
Digit Recognition with a Backpropagation Network. In
Proceedings of NIPS.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado,
and Jeff Dean. Distributed representations of words and
phrases and their compositionality. In NIPS 2013.

Xianchao Wu, Kazushige Ito, Katsuya Iida, Kazuna Tsuboi,

Momo Klyen. 2016. りんな：女子高生人工知能. 言語

処理学会.

Lantao Yu, Weinan Zhang, Jun Wang, Yong Yu. SeqGAN:
Sequence Generative Adversarial Nets with Policy Gradi-
ent. In AAAI 2017.

Xingxing Zhang and Mirella Lapata. Chinese Poetry Gener-
ation with Recurrent Neural Networks. In EMNLP 2014.

Copyright(C) 2017 The Association for Natural Language Processing.
All Rights Reserved.　　　 　　 　　 　　　 　　　　　　　　　　― 1136 ―

