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Abstract
We propose to re-tokenize data with aligned bilingual
multi-word terms to improve statistical machine transla-
tion (SMT) in technical domains. For that, we inde-
pendently extract multi-word terms from the monolingual
parts of the training data. Promising bilingual multi-word
terms are then identified using the sampling-based align-
ment method by setting some threshold on translation prob-
abilities. We estimate that the bilingual multi-word terms
extracted are correct in more than 70 % of the cases. We
report a significant improvement of BLEU scores in exper-
iments conducted on a Chinese–Japanese patent corpus.

1 Introduction
Making patents in one language available in other lan-
guages is crucial for sharing technology and increasing eco-
nomical competitiveness in a global society. The crucial
process of translation of patents should be helped by the
use of statistical machine translation (SMT). The identifica-
tion and translation of scientific or technical terms in patent
corpora is thus a challenge for machine translation.

There exist previous work on extracting scientific or
technical terms in different languages and different do-
mains for applications like information retrieval, text cat-
egorization and also for machine translation. As an im-
portant milestone in terminology extraction, [1] describes
a combination of linguistic filtering and statistical measure
(C-value/NC-value) for the automatic extraction of multi-
word terms from English scientific or technical texts. As
an application for estimating the similarity of scientific pa-
pers, [5] shows how to extract English terms in the com-
puter science and the medical domains using a C-value/NC-
value extraction method. They make use of these terms
to estimate the similarity of scientific papers in the vector
space model. From these previous works, we can see that
the C-value is commonly used as a domain-independent
method for multi-word term extraction. As for language

independence, it was shown in [6] that the C-/NC-value
method is an efficient domain-independent multi-word term
extraction technique not only in English but in Japanese as
well.

In this paper, we adopt the C-value method to extract
monolingual multi-word terms in Chinese and Japanese in-
dependently. We then apply an alignment technique, the
sampling-based alignment method [4], on the re-tokenized
Chinese–Japanese training corpus with monolingual multi-
word terms to extract aligned candidate terms. We perform
SMT experiments using the Chinese–Japanese experimen-
tal data re-tokenized again using the filtered bilingual multi-
word terms. We obtain a better translation accuracy.

2 Extraction of Chinese–Japanese
Bilingual Multi-Word Terms

2.1 Monolingual Multi-Word Term Extrac-
tion

The C-value is a widely used domain-independent approach
for multi-word extraction. It combines a linguistic com-
ponent and a statistical component. The advantage of the
C-value is that it can compute multi-word terms made up
of complex structures even when these structures have a
low frequency. As for the linguistic component, in our
experiments, for both Chinese and Japanese, we monolin-
gually extract multi-word terms which contain a sequence
of nouns or adjectives followed by a noun. This linguistic
pattern can be written as follows using a regular expres-
sion1: ( Adjective | Noun )+ Noun.

The statistical component, the measure of termhood,

1 Technically, for Chinese: ( JJ | NN )+ NN; for Japanese: (形容詞 |
名詞 )+ 名詞. ‘JJ’ and ‘形容詞’ are POS codes for adjectives, ‘NN’ and
‘名詞’ are POS codes for nouns in the Chinese and the Japanese annotated
corpora that we use.
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图 21 是 表 示
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图表 。

図 21 は 、
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である 。

在 栅栅栅极极极 电电电阻阻阻 7
的 两 端 , 层 间
绝 缘 膜 12 被 刻
蚀 , 埋 入 钨 等 的

接接接触触触 电电电极极极 6 。
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12 が エ ッ チ ン グ さ れ
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コココンンンタタタクククトトト 電電電極極極 6 が

埋め 込ま れて いる 。

当 在 脑 瘤 组 织 的
测 定 中 将 预 定 的
时间段 设定 为 大约
5 分钟 的 时候 , 得
到 充分 的 结果 。

こ の 所 要 時 間 は 、

脳脳脳 腫腫腫瘍瘍瘍 組組組織織織 の 測 定

に おいて は 5 分 程度 で

十十十分分分ななな 結結結果果果 が 得 られた

。

Figure 1: Examples of Chinese (left) and Japanese (right)
sentences re-tokenized using the extracted monolingual
multi-word terms. The boxes in plain line show the mono-
lingual multi-word terms which correspond across lan-
guages. The boxes in dashed line show the monolingual
multi-word terms which are re-tokenized only in their lan-
guage.

called the C-value, is given by the following formula:

C-value(a) =

log2 |a|× f (a) if a is not nested,

log2 |a|×
(

f (a)− 1
|Ta|

∑b∈Ta f (b)
)

otherwise

(1)

where a is the candidate string, f (a) is its frequency of oc-
currence in the corpus, Ta is the set of extracted candidate
terms that contain a, |Ta| is the number of these candidate
terms. In our experiments, following the C-value compu-
tation method and the linguistic pattern, we extract multi-
word terms from a Chinese and a Japanese training corpus
respectively. Then, we re-tokenize the training corpus with
these extracted monolingual multi-word terms by enforc-
ing these terms to be considered as one token. Technically,
we just replace each space inside a multi-word term by a
non-space word separator, so that each multi-word term is
considered as one token.

The segmenter and part-of-speech tagger that we use are
the Stanford parser2 for Chinese and Juman3 for Japanese.
Figure 1 shows examples of re-tokenized Chinese–Japanese
sentences with monolingual multi-word terms in Chinese
and Japanese respectively.

2http://nlp.stanford.edu/software/segmenter.shtml
3http://nlp.ist.i.kyoto-u.ac.jp/index.php?JUMAN

2.2 Bilingual Multi-Word Term Extraction

Bilingual multi-word terms are multi-word term to multi-
word term alignments, i.e., we only want to extract cor-
responding terms which are multi-word terms at the same
time in both languages. We extract them by performing
word-to-word, or, better said, token-to-token alignment on
the Chinese–Japanese training corpus re-tokenized as de-
scribed in the previous section. For that, we use the open
source implementation of the sampling-based alignment
method, Anymalign [4]4. We further select the best bilin-
gual multi-word terms by setting some threshold P on each
of the direct and inverse translation probabilities (0<P≤1).
Table 1 shows examples from the results of bilingual multi-
word term extraction.

2.3 Using Bilingual Multi-Word Terms in
SMT

We propose two protocols to use these extracted bilingual
multi-word terms in SMT experiments. We will compare
these two protocols with a standard baseline system.

The first protocol (System re-tok-all) is as follows. We
train the translation model based on the training corpus re-
tokenized with the best bilingual multi-word terms. The
language model is learnt on the target part of the re-
tokenized training corpus. The tuning and test sets used are
also re-tokenized with the same bilingual multi-word terms
as used for re-tokenizing the training data. We remove the
non-space word separators after decoding and before the
evaluation process.

The second protocol (System re-tok-train-only) is as fol-
lows. We train the translation model only based on the
training corpus re-tokenized with the best bilingual multi-
word terms. But the language model is learnt based on the
original, un-re-tokenized, target language part of the train-
ing corpus. For consistency, we remove the non-space word
separators from the phrase tables before performing tuning
and decoding.

3 Experiments

3.1 Chinese and Japanese Data Used

The Chinese–Japanese parallel sentences used in our exper-
iments are randomly extracted from the Chinese–Japanese

4 Anymalign is a phrase-to-phrase alignment tool, but the use of option
-N 1 limits its functionality to word-to-word alignment. Technically, we
identify the multi-word term to multi-word term alignments by spotting
the non-space word separators inserted inside multi-word terms in place
of spaces.
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Chinese Japanese Meaning P(t|s) P(s|t) Kept Good
match

硬质 碳 皮膜 硬質 炭素 皮 膜 ‘diamond-like carbon’ 1.000 1.000 yes yes
接触 电极 コンタクト 電極 ‘contact electrode’ 0.946 0.972 yes yes
极板 極 板 ‘electrode plate’ 0.992 1.000 no yes
废 热 廃 熱 ‘waste heat’ 0.844 0.241 no yes
变速 机 変速 機 ‘variable-speed motor’ 1.000 0.006 no yes
芯片 级
控 制 手
机 模块

チップ レベル – 1.000 1.000 yes no

激振 电极 主に 形成 – 0.862 0.982 yes no

Table 1: Examples of bilingual multi-word terms extracted and then filtered by our method: firstly, pairs with only one word
on any side are rejected, then pairs of multi-word terms where one of the translation probabilities is below the threshold (0.6
here) are rejected. The last column shows which extracted multi-word term pairs were considered correct or not by manual
inspection.

JPO Patent Corpus (JPC)5. For our experiments, we ran-
domly extract 100,000 parallel sentences from the training
part, 500 parallel sentences from the tuning part, and 1,000
from the test part.

3.2 Monolingual and Bilingual Multi-Word
Term Extraction

We apply the method described in Section 2.1 to inde-
pendently extract monolingual multi-word terms from the
100,000 sentences of the training data of our Chinese–
Japanese parallel corpus. We independently obtain 81,618
multi-word terms in Chinese and 93,105 in Japanese. The
extracted monolingual multi-word terms were ranked by
decreasing order of C-values. We re-tokenize the train-
ing corpus with the same number of Chinese and Japanese
monolingual multi-word terms respectively. These terms
are the first 80,000 monolingual multi-word terms with the
highest C-values in each language.

We then extract bilingual multi-word terms from the
Chinese–Japanese training corpus re-tokenized using these
80,000 monolingual multi-word terms, by following the
method described in Section 2.2. We measured the num-
ber of bilingual multi-word terms extracted from the re-
tokenized training corpus of 100,000 sentence pairs by the
sampling-based alignment method which meet the con-
straint of having both translation probabilities above a given
threshold. The second column in Table 2 shows this num-
ber when the threshold varies. In addition, we manually
checked the correspondence between these bilingual multi-
word terms. The percentage of good matches was roughly
estimated to be over 70 % when the threshold becomes
greater than 0.4.

5 http://lotus.kuee.kyoto-u.ac.jp/WAT/patent/index.

html

3.3 SMT systems

We train a standard baseline system (no re-tokenization)
using the GIZA++/MOSES pipeline [3]. We train the
Chinese-to-Japanese translation model with 100,000 train-
ing parallel corpus. The monolingual part in the target lan-
guage (Japanese) is used to learn a language model using
KenLM [2] in word-based 5-grams. The development data
with 500 parallel sentences is used for tuning by minimum
error rate training [7]. For decoding, we use the default
options of Moses, the distortion limit is set to 20.

Different from the baseline SMT system, here we make
use of bilingual multi-word terms following the two exper-
imental protocols described in Section 2.3.

Table 2 (column 3) shows the evaluation results for the
first protocol (System re-tok-all) in BLEU scores [8]. We
did not obtain significant difference in BLEU in compar-
ison with the baseline system, except for BLEU scores
which are significant lower than those of the baseline sys-
tem when the thresholds are P≥ 0.1 and P≥ 0.4.

Because re-tokenization of all of the data did not lead to
improvement, we decide to only re-tokenize the Chinese–
Japanese training parallel corpus (System re-tok-train-
only).

Table 2 (column 4) shows the evaluation of the results
for the second protocol (System re-tok-train-only). Com-
pared with the baseline system and the System re-tok-all,
we obtained significantly better results in BLEU scores for
thresholds equal to or greater than 0.3, while the scores for
lower thresholds are similar to and not significantly differ-
ent from the score of the baseline system. This shows that
this protocol at least does not hurt and may be beneficial
when applied with any value for the threshold.
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Thresholds
] of bilingual multi-word terms

(filtered by thresholds)
BLEU

(System: re-tok-all)
BLEU

(System: re-tok-train-only)
≥ 0.0 52,785 (35 %) 32.08±1.07 32.44±1.07
≥ 0.1 31,795 (52 %) 31.88±1.10 32.23±1.18
≥ 0.2 27,916 (58 %) 32.42±1.14 32.00±1.16

Baseline - 32.35 ±1.15 32.35±1.15
≥ 0.3 25,404 (63 %) 31.85±1.08 33.08±1.12∗

≥ 0.4 23,515 (72 %) 31.45±1.13 32.77±1.15∗

≥ 0.5 21,846 (76 %) 32.11±1.12 33.02±1.14∗

≥ 0.6 20,248 (78 %) 32.68±1.13 33.32±1.15∗
≥ 0.7 18,759 (79 %) 32.61±1.12 32.85±1.19∗

≥ 0.8 17,311 (79 %) 32.34±1.15 33.25±1.06∗

≥ 0.9 15,464 (80 %) 32.16±1.11 33.20±1.15∗

Table 2: Results of bilingual multi-word extraction and evaluation results for Chinese-to-Japanese translation with the two
proposed protocols (Systems re-tok-all and re-tok-train-only) for different thresholds on the translation probabilities. The
score of the baseline is given on line 4. The best BLEU score obtained (33.32) is for the System re-tok-train-only with a
threshold of 0.6 (boldfaced score). BLEU scores marked with ∗ are significantly better than the score of the Baseline system
at p < 0.01, except for threshold ≥ 0.4 at p < 0.05.

4 Conclusion
We proposed an approach to improve translation accu-
racy in statistical machine translation of Chinese–Japanese
patents by re-tokenizing the parallel training corpus with
extracted bilingual multi-word terms using our proposed
methods. We did not use any other additional corpus or ter-
minological lexicon. An investigation of the results of our
experiments indicate that the bilingual multi-word terms
extracted have over 70 % precision (good match) for thresh-
old values over 0.4.

We proposed two experimental protocols for using the
extracted bilingual multi-word terms in SMT experiments.
The first protocol re-tokenized all of the data with the
bilingual multi-word terms. The second protocol only re-
tokenized the training data to produce the phrase tables of
the SMT system. The first protocol did not lead to improve-
ments in translation accuracy compared with the baseline
system. The second protocol led to statistically significant
improvements for thresholds equal to or greater than 0.3.
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