
言語処理学会 第22回年次大会 発表論文集 (2016年3月)

Summarizing Events using Twitter Updates

Vu Ngoc Son Hitoshi Nishikawa Takenobu Tokunaga

Department of Computer Science, Tokyo Institute of Technology

vu.n.aa@m.titech.ac.jp {hitoshi, take}@cs.titech.ac.jp

1 Introduction

Popularity of social networks such as Facebook R⃝ and
Twitter R⃝ has grown rapidly in recent years. With
millions of users posting status updates everyday,
these platforms have become a valuable source of
information. Users’ updates often contain descrip-
tion, opinion about events happening around them
in real-life. However, as the amount of updates for
such events is usually very large, for instance, hun-
dreds of thousands of tweets, some sort of summa-
rization is required. If such a summary is available,
it is possible for users to access latest information
without having to wait for other human-generated
sources such as newspaper, etc.

The objective of this research is to develop a
method for generating summaries of events using
Twitter status updates. We also limit our summa-
rization target to events which are long-running and
consist of multiple smaller events (sub-event) such
as sports events, live broadcast, etc. In our experi-
ment, we use Twitter updates of soccer matches as
the input source for summary generation. Output
summaries are evaluated by comparing with news
reports of corresponding matches.

2 Related Work

There has been research on microblog summarization
using various approaches.

Sharifi et al. [7] proposed a phrase graph tech-
nique to create a summary from a set of input tweets.
However, this algorithm only generates one sentence
as the final summary, which is as short as a single
tweet. Therefore this method is not suitable for our
summarization target.

Takamura et al. [8] viewed the task of sum-
marizing short documents on a timeline as a fa-
cility location problem with a linear-partition con-
straint. Chakrabarti et al. [1] used a modified
Hidden Markov Model to segment the timeline into
sub-events and then produced summaries for those
sub-events. This method required the system to be
trained, and it is thus limited to events in which mul-
tiple similar sub-events are available.

A common characteristic among long-running
events which contains multiple important moments
(sub-events) is burstiness [2]. Bursts occurring, usu-
ally shown as increase in certain tweet statistics such
as tweet frequency, can be viewed as a signal for im-
portant moments in an event. There are several stud-
ies in which burst detection is used to better iden-
tify and extract important information which can im-
prove quality of output summaries.
Nichols et al. [5] used a method in which they

first detect and extract bursts from a tweet stream
and then select summary tweets for each of them.
For sentence extraction they adapted Sharifi’s phrase
graph based method. However, unlike Sharifi’s
method, it’s possible to select multiple sentences for
each sub-event.
Kubo et al. [3] also used burst detection in or-

der to extract important moments. Their sentence
extraction method combined tweet scoring with user
scoring. Their scoring method emphasized how often
a user posts explanatory tweets. Since only one tweet
is selected as a representative for each sub-event, it is
difficult to deal with cases in which multiple impor-
tant moments occurs during the same burst period,
e.g. a red card followed by a penalty.
In our research, we also make use of burst detec-

tion to help extract important moments from the
stream.

3 Summarization Method

3.1 Observations

First, by monitoring Twitter stream, we observed the
following properties:

• The stream often contains bursts, which can
be defined as sudden increase of tweet volume.
They usually coincides with important moments
of a match such as goal, red card, etc. This can
be explained as such moments encourage users
to make comments or to report about what hap-
pened, resulting in increase of user activity.

• During burst period, there is a large amount of
similar tweets describing what happened.

Copyright(C) 2016 The Association for Natural Language Processing.
All Rights Reserved.　　　 　　 　　 　　　 　　　　　　　　　　― 505 ―

Therefore, by focusing on detecting bursts, impor-
tant information can be extracted more effectively.

3.2 Method

In order to apply burst detection to the summariza-
tion process, we produce a summary through two
steps. We first detect burst periods among a tweet
stream, and then select important tweets by making
use of detected burst periods.

3.2.1 Burst Detection

We perform burst detection based on monitoring
tweet volume over time. We first calculate the num-
ber of tweets posted every minute and then judge a
burst to be occurred when the tweet volume exceeds
a certain burst threshold. As a result we obtain a
list of bursts, each burst is defined as a pair of time
points {start time, end time}. This makes it conve-
nient to extract tweets in a burst period as well as
to evaluate our burst detecting algorithm.

3.2.2 Summary Generation

To evaluate the effectiveness of burst detection in
generating a summary for a tweet stream, we com-
pared two extractive method for summary genera-
tion.

• Burst Period as Segment (BPS): Tweets are
extracted only from burst periods and used as
input for our summarizer. This method can re-
duce calculation time drastically, however there
is a risk of losing important updates if the burst
detection algorithm does not catch all bursts.

• Burst Period as Feature (BPF): Tweets
in burst periods are labeled as important and
therefore has increased weight. We do this
by adding weight to original importance of the
tweets in the burst periods. This method en-
sures no loss of information by keeping all the
tweets as an input.

For both methods, each tweet in a tweet stream
has importance calculated through collection fre-
quency (CF)1 weighting. We first calculate the im-
portance of each term consisting of a tweet based
on CF weighting, and then add up all importance of
terms consisting of the tweet.

For selecting important tweets from among all
tweets in the stream, we use a maximum coverage
problem with knapsack constraint model (MCKP)
[4]. This model is to cover terms in input tweets
as many as the given maximum length of an output

1If term A appears 1,000 times in an input tweet stream,
its CF is 1,000. This scoring method emphasis on terms ap-
pearing frequently.

Input
Average number of tweets 37,137
Average tweets/min 275

Reference summaries
Average word count 464
Average sentence count 15

Table 1: Corpus statistics

summary allows. Due to the characteristics that this
model does not take into account the importance of
words more than once, it is invulnerable for redun-
dant inputs; hence this model has widely been used
in the area of multi-document summarization where
severe redundancy prevails. Due to a huge amount of
input tweets, we employ an approximation method, a
greedy algorithm, to find a set of important tweets.
We use Shuca2 as an implementation of MCKP to
employ it.

4 Evaluation

4.1 Data

In order to evaluate our system we use a data set
consisting of 16 soccer matches of Barclays Premier
League between August and December 2015. We use
Twitter’s stream API to record tweets. Updates for
each match are filtered from Twitter stream by us-
ing a league and team name as a keyword. We also
prepare reference summaries taken from premier-
league.com3 to use as gold standard. The dataset’s
statistics are shown in Table 1.

4.2 Preprocessing

After extracting texts from tweet data, we remove all
non-word characters, emoticons, and URLs. We then
use Porter’s algorithm4 in the stemming process.

4.3 Parameter Settings

In our burst detection program, we calculate tweet
volume for each match, then set the burst threshold
to three times the median value. Time window for
tweet volume calculation is set to one minute. We
also set the length of generated summary to 15 sen-
tences which is the same as the average length of
reference summaries.

4.4 Evaluation Method

We use ROUGE-1 [6] as an evaluation method. Not
only input tweets but also reference summaries are

2https://github.com/hitoshin/shuca
3http://www.premierleague.com/
4http://tartarus.org/martin/PorterStemmer/

Copyright(C) 2016 The Association for Natural Language Processing.
All Rights Reserved.　　　 　　 　　 　　　 　　　　　　　　　　― 506 ―

Random CF BPS BPF
ROUGE-1 0.106 0.275 0.248 0.269

Table 2: Average ROUGE score

Recall Precision
Average 0.377 1

Table 3: Burst Detection Evaluation

stemmed for matching terms among output sum-
maries with those among reference summaries.

4.5 Compared Method

We compared following four methods:

• Random: Tweets for an output summary are
randomly selected. In this method, a summa-
rizer try to select a tweet randomly from among
an input tweet stream until the length of se-
lected tweets reaches a given maximum sum-
mary length. This is the first baseline.

• CF: Tweets are selected through MCKP with
CF weighting. That is, this method does not
employ burst detection. This is the second base-
line.

• Burst Period as Segment (BPS): Tweets
are extracted from only burst periods and then
used to generate a summary. This is a proposed
method.

• Burst Period as Feature (BPF): Tweets in
burst periods obtain additional weight. This is
also a proposed method.

4.6 Summarization Results

Average ROUGE scores for matches are shown in
Table 2. CF performed best, then BPF and BPS
followed. We discuss this result in the next section.

4.7 Discussion

From the experiment result, we notice a drop in
ROUGE score when burst detection is applied to the
summarization process, especially when we use the
BPS method. This is most likely because our burst
detection program is not performing well enough.

In order to evaluate the burst detection process,
we manually annotated bursts for each match based
on reviewing tweet volume changes as well as match
reports. Each burst period is represented as a pair of
time points {start time, end time}. Then we com-
pare this with the result of our burst detection pro-
gram. The average recall and precision score are

Figure 1: Match showing clear spikes

Figure 2: Match showing many small spikes

shown in Table 3. Recall and precision score of our
burst detection algorithm show that although it suc-
cessfully identified bursts in the stream, it failed to
catch all burst on the stream. Since the proposed
BPS method only generates a summary from the
tweets in burst periods, the result is more affected
by burst detection performance, showing the lower
score.

We show an example of bursts in Figure 1 and 2. In
Figure 1, clear three spikes are observed in the latter
of the match. In such a case our burst detection
algorithm easily identify bursts among the stream.
In Figure 2, however, many small spikes are observed,
inherently making burst detection erroneous.

In order to evaluate the effectiveness of applying
burst detection to summarization, we redo the ex-
periment with a part of the data set using human-
annotated bursts instead of our burst detection pro-
gram. The results are shown in Table 4. The number
of bursts shown in Table 4 is manually counted. We
notice that even though the gold standard for burst
detection is used, there are cases which the score
does not improve comparing to our baseline method
without burst detection.

In those cases, our hypothesis is that what Twitter
users view as important information does not always
coincides with journalists. Twitter users seem to be
more interested in what is currently happening and
are more likely to react to events such as goal or

Copyright(C) 2016 The Association for Natural Language Processing.
All Rights Reserved.　　　 　　 　　 　　　 　　　　　　　　　　― 507 ―

Match Random CF BPS Bursts
Ars-Sto 0.075 0.284 0.308 3
Che-Sto 0.104 0.265 0.258 1
Eve-Liv 0.071 0.304 0.263 3
Lei-Mun 0.166 0.262 0.270 3
Sun-Tot 0.191 0.331 0.304 2
Swa-Eve 0.057 0.274 0.281 2
Tot-Che 0.132 0.251 0.305 3
Wat-Ars- 0.112 0.260 0.292 4
Wat-Cry 0.162 0.324 0.333 4
Wat-Mun 0.136 0.243 0.269 4

Table 4: ROUGE score with human-annotated
bursts

red card in a soccer match. This is proven by how
bursts often coincide with those events. However, by
examining news reports we used as gold standard in
the experiment, news writers on the other hand are
also interested in other details and they often view
the match as a whole. We also notice that matches
in which the score failed to improves are ones with
less sub-events, such as goals, and fewer bursts are
detected, less than 4, in our case.

5 Conclusion

In this research, we attempt to apply burst detection
in order to improve microblog summary generation.
By examining the result, we conclude that although
there are improvements in many cases as long as the
burst detection algorithm performs well enough, ap-
plying burst detection does not always guarantee a
better output summary. However, since using burst
detection to extract tweets for summarization can
drastically reduce input size, it has much better time
efficiency while being able to provide comparable re-
sults in many cases.

As for future work, based on the observation de-
scribed above, separating the streams where burst
detection would work from those where it would not
work is expected to be a promising direction.

References

[1] D. Chakrabarti and K. Punera, Event Summariza-
tion Using Tweets, In Proceedings of the Fifth Inter-
national AAAI Conference on Weblogs and Social
Media, pp. 66–73, 2011.

[2] J. Kleinberg, Bursty and Hierarchical Structure
in Streams, In Proceedings of the Eighth ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), pp. 91–101,
2002.

[3] M. Kubo, R. Sasano, H. Takamura, M. Okumura,
Generating Live Sports Updates from Twitter by

Finding Good Reporters, In Proceedings of the
2013 IEEE/WIC/ACM International Conferences
on Web Intelligence (WI) and Intelligent Agent
Technology (IAT), pp. 527–534, 2013.

[4] H. Takamura and M. Okumura, Text Summariza-
tion Model based on Maximum Coverage Problem
and its Variant, In Proceedings of the 12th Confer-
ence of the European Chapter of the ACL, pp. 781–
789, 2009.

[5] J. Nichols, J. Mahmud, and C. Drews, Summarizing
sporting events using twitter, In Proceedings of the
2012 ACM international conference on Intelligent
User Interfaces (IUI), pp. 189–198, 2012.

[6] C. Y. Lin, ROUGE: A Package for Automatic Evalu-
ation of Summaries, In Proceedings of Text Summa-
rization Branches Out: Proceedings of the ACL-04
Workshop, pp. 74–81, 2004.

[7] B. Sharifi, M. A. Hutton, and J. Kalita, Summa-
rizing microblogs automatically, In Human Lan-
guage Technologies: The 2010 Annual Conference
of the North American Chapter of the ACL (HLT-
NAACL), pp. 685–688, 2010.

[8] H. Takamura, H. Yokono, and M. Okumura, Sum-
marizing a document stream, In Proceedings of the
annual 33rd European Conference in Information
Retrieval (ECIR), pp. 177–188, 2011.

Copyright(C) 2016 The Association for Natural Language Processing.
All Rights Reserved.　　　 　　 　　 　　　 　　　　　　　　　　― 508 ―

