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1 Introduction

Semantic parsing (SP) is the problem of parsing a given

natural language (NL) sentence into a meaning represen-

tation (MR) conducive to further processing by applica-

tions. One of the major challenges in SP stems from the

fact that NL is rife with ambiguities. Previous works us-

ing statistical models along with formalisms such as com-

binatorial categorial grammars, synchronous context free

grammars, and dependency-based compositional seman-

tics have shown notable success in resolving these ambi-

guities [7, 9, 12, 11, 14].

However, in many cases, the input for NL applications

is underspecified and ungrammatical. We illustrate the

example of search queries in Table 1. From these queries

(Column 1) and their MRs (Column 2), we can see that

there are several kinds of ambiguity. For example the

parser must make the distinction between Kobe as a city

or a basketball player. This problem of word sense ambi-

guity occurs in standard semantic parsing tasks, but there

are also more pernicious problems unique to the more

ambiguous input posed by search queries. Focusing on

the queries “Kobe hotels” and “Kobe flight” we can see

that it is also necessary to estimate the latent relation-

ship between words, such as “location” or “destination.”

However it should be noted that if we take the keyword

query and re-express it as a more explicit paraphrase, we

can reduce this ambiguity to the point where there is only

one reasonable interpretation. For example, in the second

line, if we add the preposition “to” the user is likely ask-

ing for flights that arriving in Kobe, and if we add “from”

the user is asking for departures.

In this paper, we focus on SP of ambiguous input and

propose a new method for dealing with the problem of

ambiguity. Specifically we describe a framework where

an ambiguous input (Column 1) is simultaneously trans-

formed into both its MR (Column 2) and a more explicit,

less ambiguous paraphrase (Column 3). The advantage

of this method is that it is then possible to verify that the

paraphrase indeed expresses the intended meaning of the

underspecified input. Specifically, this verification can be

done either manually by the system user or automatically

using a probabilistic model trained to judge the natural-

ness of the paraphrases.

As a concrete approach, we build upon the formalism

of synchronous context free grammars (SCFG). Unlike

traditional SCFGs, which usually only generate one tar-

get string (in semantic parsing, an MR), we introduce

a new variety of SCFGs called “tri-synchronous” gram-

mars, which generate multiple strings on the target side.

This allows us to not only generate the MR, but also

jointly generate the more explicit paraphrase. We then

use a language model (LM) over the paraphrases gener-

ated by each derivation to help determine which deriva-

tions, and consequently which MRs, are more likely.

Evaluation was performed using the Geoquery bench-

mark of 880 query-logic pairs representing questions

about US geography [13]. The baseline SCFG parser

achieves reasonable accuracy on regular questions but

when the same method is used with underspecified input,

the system accuracy decreases significantly. On the other

hand, when incorporating the proposed tri-synchronous

grammar to generate paraphrases and verify them with

an LM, we find that it is possible to recover the loss of

accuracy, resulting in a model that is able to parse the

ambiguous input with significantly better accuracy. 1

2 Semantic Parsing using SCFGs
Synchronous context free grammars are a generalization

of context-free grammars (CFGs) that generate pairs of

related strings instead of single strings. Slightly modify-

ing the notation of Chiang [3], we can formalize SCFG

rules as:

X → 〈γs, γt〉 (1)

where X is a non-terminal and γs and γt are strings of ter-

minals and indexed non-terminals on the source and tar-

1This is a shortened version of an article previously appearing in the

Transaction of the Association for Computational Linguistics [1]. Tools

to replicate our experiments can be found at http://isw3.naist.jp/~philip-

a/tacl2015/index.html
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Search Query Meaning Representation Paraphrase
Kobe Hotel λx (hotel(x) ∧ in(x, kobe city)) Hotel in Kobe city

Kobe Flight λx (flight(x) ∧ to(x, kobe city)) Flight to Kobe city

Kobe Height height(kobe bryant) Height of Kobe Bryant

Table 1: Example of a search query, MR, and its paraphrase.

get side of the grammar. Each non-terminal on the right

side is indexed, with non-terminals with identical indices

corresponding to each-other.

In SP with SCFGs, γs is used to construct a natural

language string S and γt is used to construct the MR T
[11]. Wong and Mooney [12] further extended this for-

malism to handle λ-SCFGs, which treat γs as the natural

language query and γt as an MR based on λ-calculus.

SCFG rules are automatically learned from pairs of sen-

tences with input text and the corresponding MR, where

the MR is expressed as a parse tree whose internal nodes

are predicates, operators, or quantifiers.

In this paper, we build a SP framework using an ap-

proach from Li et al. that uses GHKM algorithm [5] to

extract SCFGs [8].

3 Semantic Parsing of Keywords

When users input keyword queries, they will often ig-

nore the grammatical structure and omit function words.

We perform experiments on this particular variety of am-

biguous input, both to examine the effect that it has on

parsing accuracy under the baseline model, and to exam-

ine whether this sort of ambiguity can be reduced. In this

work, we simulate the keyword query K by altering the

original question S to make it more closely match the

style of keyword queries by stop word deletion, and word

order shuffling.

Stop word deletion, as its name implies, simply deletes

all stop words from the input sentence. We use a stop

word list, making a few subjective changes to make the

simulated keyword output more realistic. Word order

shuffling reorders the tokens randomly, then we had a hu-

man annotator fix the order of the keywords manually.

This produced a single keyword query K for a particular

question/MR pair in the Geoquery database, which will

be used to train and verify our system. At the end we

will have a tri-parallel corpus consisting of 880 pairs of

keyword, question, and the meaning representation.

4 Joint Semantic Parsing and Para-
phrasing using Tri-Synchronous
Grammars

We adopt a generalization of SCFGs, the n-synchronous

context free grammar (n-SCFG) [1, 10] to build our joint

SP framework. In an n-SCFG, the elementary structures

are rewrite rules of n− 1 target sides:

X → 〈γ1, γ2, ..., γn〉 (2)

where X is a non-terminal symbol, γ1 is the source

side string of terminal and non-terminal symbols, and

γ2, ...γn are the target side strings. Therefore, at each

derivation step, one non-terminal in γ1 is chosen and all

the corresponding non-terminals with the same index in

{γ2, ..., γn} are rewritten using a single rule.

4.1 Tri-SCFGs for Semantic Parsing
In this work, we construct the tri-synchronous grammar

by transforming the basic SCFG for semantic parsing into

a 3-SCFG. Specifically, we first assume that the source

question γs and target MR γt of the original SCFG be-

come the two outputs γ2 and γ3 of the new 3-SCFG gram-

mar. γ1 is the newly added keyword query input.

During the process of model training, we first extract

rules consisting of γ2 and γ3, then generate γ1 from γ2 by

deleting the stop-words then rearranging the order of the

words based on word alignments between the keyword

query and the original question. This is done by rear-

ranging each word in K based on their original position

in S.2 Finally, we use the tuple 〈γ1, γ2, γ3〉 to form rules

in our tri-synchronous grammar.

4.2 Integrating Language Models with Tri-
SCFGs

LM plays important role in ensuring fluent output by as-

signing a probability to the target sentence. In case of

n-gram language models, this probability is defined as:

pLM (W ) =

l∏

i=1

p(wi|wi−1, wi−2, ...wi−n+1) (3)

where the probability of sentence W of length l is calcu-

lated as the product of the probability of its words, de-

pending on the previous n− 1 words.

We could also consider constructing a probabilistic LM

over MR T for semantic parsing. However, constructing

a language model for the MR is less straightforward for

several reasons. First, the order of the words of MR in

the same rooted logical tree will not make a difference in

the final result (e.g. for a commutative operator node).

Second, while language models for natural text benefit

2In practice, we use a statistical word alignment to determine the

original position of K in S.
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from the large amounts of text data available on the web,

obtaining correct MRs to train a model is less trivial.

On the other hand, in our tri-synchronous grammar

framework, in addition to the MR itself, we are gener-

ating a paraphrase that nonetheless holds some disam-

biguating power over the MR. The naturalness of this

paraphrase output, like the output of the MT system, can

easily be judged by a language model, and might have

some correlation with the naturalness of the MR itself.

Thus, in this work we add a language model over the

paraphrase output as a feature of the scoring model.

5 Experiment and Analysis

5.1 Setup
Data: We use the full Geoquery dataset using the stan-

dard 10 folds of 792 and 88 test data [12]. We created

keyword queries according to the process described in

Section 3. We follow standard procedure of removing

punctuation and stemming for all natural language text.

Parsing: Parsing is done by performing decoding of the

SCFG-based parsing model to translate the input query

into an MR including λ-calculus expressions, then fir-

ing the query against the database. Before querying

the database, we also apply Wong and Mooney’s type-

checking rules to ensure that all MRs are logically valid

[12].

Language Model: For all 3-SCFG systems we use a 4-

gram Kneser-Ney smoothed language model. Standard

preprocessing such as lowercasing and tokenization is

performed before training the models. We build language

models with a corpus of question data [4]. In addition,

we also use a 4-gram feed-forward neural network lan-

guage model (NNLM) feature [2]. For the parsing with

NNLM, we recalculate the score of the paraphrases by

firstly adding the NNLM score as an additional feature

and taking the parse with the best score.

Parameter Optimization: For learning the parameters

of the scoring function we use 10-fold cross validation on

the training data, using a model trained on 712 examples

to parse the remaining 79 for each fold.

Evaluation: Following Wong and Mooney [12], we use

question answering precision, recall, and F-measure as

our evaluation measure. The query is correct if and only

if the SCFGs can generate a syntactically correct parse

tree, and retrieve the correct answers from the database.

5.2 Results & Analysis
In this section, we examine the effect of the pro-

posed method on accuracy of parsing ambiguous key-

word queries. Specifically, in Table 2, the baseline “Di-

rect” method of training a standard SCFG-based semantic

parser, the proposed method without language model ver-

ification “Tri-LM,” and the proposed method using lan-

guage model with NNLM reranking “Tri+LM.”

Input Method P R F

Question Direct .880 .878 .879

Keyword

Direct .792 .790 .791

Tri-LM .804 .790 .797

Tri+LM .830 .820 .827

Table 2: Parsing accuracy, where Keyword Direct is the

baseline for semantic parsing on keyword queries, and the

Tri with the language model (LM) for verification is our

proposed method. Bold indicates a significant gain over

both Direct and Tri-LM for keyword input according to

bootstrap resampling [6] (p < 0.05).

Looking at the baseline accuracy over full questions

(first row), the recall is slightly superior to 87.6% of Li

et al. [8], showing our baseline is comparable to previous

work. When we apply the same method to parse the key-

word queries (second row), however, the recall drops al-

most 9%, showing that the ambiguity included in the key-

word query input causes large decreases in accuracy of a

semantic parser built according to the baseline method.

Then, when adding the language model to the 3-SCFG

system (fourth row) we can see a significant of 3-4% gain

over the Direct and the Tri-LM systems, demonstrating

that the proposed method is indeed able to resolve some

of the ambiguity in the keyword queries.

To illustrate how the language model helps, we pro-

vide two examples in Table 3. The first example shows

that considering the original question when parsing from

keywords can help improve alignment with the MR for

more plausible results. The second example shows the

effect of adding the language model to disambiguate the

keyword query. Here there are several interpretations for

the keyword-query “largest capital state,” which also can

mean “state that has the largest capital,” or “largest state

in the capital.” The system without the language model

incorrectly chooses the latter interpretation, but the sys-

tem with the language model correctly disambiguates the

sentence as it considers the phrase “state in capital” is

unlikely, showing the effectiveness of our method.

5.3 Human Evaluation

We performed an additional evaluation in which human

annotators evaluate the paraphrases generated from the

systems to validate our hypothesis that human users will

be even better at judging whether or not a paraphrase

makes sense. First, we took the 1-best parse and 7 ran-

dom parses from the Tri+LM and Tri-LM systems where

both systems produced a non-empty n-best. Then we

show both the keyword queries and all the paraphrases

to human evaluators to choose which paraphrase matches

their interpretation. 3 annotators were asked to annotate

300 keyword queries and their paraphrases.

Table 4 shows the improvement of the system with hu-

man help. We take all the answers from the annotators

and replaced the answer of the Tri+LM system. Overall,
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Ex. LM Paraphrase/MR Correct

1

Direct answer(A,(capital(A),loc(A,B),largest(C,population(B,C)))) no

Tri-LM answer(A,largest(B,(capital(A),population(A,B)))) yes

Tri+LM what capital has the largest population

Original Question: what capital has the largest population

Original MR: answer(A,largest(B,(capital(A),population(A,B))))

Keyword: largest population capital

2

Direct(-) answer(A,largest(A,(capital(A),city(A),loc(A,B),state(B)))) no

Tri-LM answer(A,largest(A,(state(A),loc(A,B),capital(B)))) no

what is the largest state in capital

Tri+LM answer(A,(state(A),loc(B,A),largest(B,capital(B)))) yes

what state has the largest capital

Original Question: what state has the largest capital

Original MR: answer(A,(state(A),loc(B,A),largest(B,capital(B))))

Keyword: largest capital state

Table 3: Examples of paraphrase outputs produced by the direct keyword-MR system, and the proposed systems without

and with a language model.

System Precision

Tri-LM .803

Tri+LM .834

Tri+LM+Human .846

Table 4: System precision with additional human help.

there were 35 questions that changed between the 1-best

and human choices, with 23 improving and 12 degrad-

ing accuracy. This experiment suggests that it is possible

to show the generated paraphrases to human users to im-

prove the accuracy of the semantic parser.

6 Conclusion and Future Work
We introduced a method for constructing a semantic

parser for ambiguous input that paraphrases the ambigu-

ous input into a more explicit form, and verifies the cor-

rectness using a language model. An evaluation showed

that our method is effective in recovering the 9% loss of

system accuracies, providing a 3% improvement. Human

evaluation also confirmed that manually evaluating the

paraphrases generated by our framework can improve the

accuracy of the semantic parser further.

There are a number of future directions for this study.

First, we plan to scale the proposed method to open do-

main semantic parsing of search queries over extensive

knowledge bases. In addition, we also plan to incorpo-

rate a learning framework that learns from unannotated

data.
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