
言語処理学会 第20回年次大会 発表論文集 (2014年3月)

Automatic Extraction of Emotive and Non-emotive
Sentence Patterns

Michal Ptaszynski † Fumito Masui † Rafal Rzepka ‡ Kenji Araki ‡
† Department of Computer Science, Kitami Institute of Technology

{ptaszynski,f-masui}@cs.kitami-it.ac.jp
‡ Graduate School of Information Science and Technology, Hokkaido University

{kabura,araki}@media.eng.hokudai.ac.jp
Abstract

In this research we focus on automatic extraction of patterns from emotive (emotionally loaded) sentences. We assume emotive
sentences stand out both lexically and grammatically and verify this assumption experimentally by comparing two sets of such
sentences. We use a novel pattern extraction method based on the idea of language combinatorics. Extracted patterns are applied
in a text classification task of discriminating between emotive and non-emotive sentences. The method reached balanced F-score
of 76% with Precision equal to 64% and Recall 93%.

1 Introduction
Recently the field of sentiment analysis has been attract-
ing great interest. It has become popular to try differ-
ent methods to distinguish between sentences loaded with
positive and negative sentiments. However, a few re-
search focused on a task more generic, namely, discrimi-
nating whether a sentence is even loaded with emotional
content or not. In this research we decided to tackle the
problem in a standardized and systematic way. We de-
fined emotionally loaded sentences as those which in lin-
guistics are described as fulfilling the emotive function
of language. We assumed that there are repetitive pat-
terns which appear uniquely in emotive sentences. We
performed experiments using a novel unsupervised clus-
tering algorithm based on the idea of language combina-
torics. By using this method we were also able to mini-
mize human effort and achieve F-score comparable to the
state of the art while achieving much higher Recall rate.

The outline of the paper is as follows. Firstly, we define
the problem as such in section 2. Section 3 describes the
language combinatorics approach which we used to com-
pare emotive and non-emotive sentences. In section 4 we
describe our dataset and experiment settings, present the
overall results of the classification experiments as well as
discuss the particular patterns extracted during the exper-
iment. Finally the paper is concluded in Section 5.

2 Problem Definition
The task of discriminating between emotive and non-
emotive sentences could be considered as a kind of au-
tomated text classification task, which is a standard task
in NLP. Some of the approaches to text (or document)
classification include Bag-of-Words (BOW) or n-gram.
In the BOW model, a text or document is perceived as an
unordered set of words. BOW thus disregards grammar
and word order. An approach in which word order is re-
tained is called the n-gram approach, proposed by Shan-
non over half a century ago [4]. This approach perceives
a given sentence as a set of n-long ordered sub-sequences
of words. This allows for matching the words while re-
taining the sentence word order. However, the n-gram ap-
proach allows only for a simple sequence matching, while

disregarding the grammar structure of the sentence. Al-
though instead of words one could represent a sentence
with parts of speech (POS), or dependency structure, the
n-gram approach still does not allow extraction or match-
ing of more sophisticated patterns than the subsequent
strings of elements. An example of a pattern more so-
phisticated than n-gram, can be explained as follows. A
sentence in Japanese Kyō wa nante kimochi ii hi nanda !
(What a pleasant day it is today!) contains a pattern nante
* nanda !1. The existence of such patterns in language is
common and well recognized. However, it is not possible
to discover such subtle patterns using only n-gram ap-
proach. In our research to extract such patterns we used
SPEC [2] a system for extracting from unrestricted text
frequent patterns more sophisticated than n-grams and
preserving the word order.

3 Language Combinatorics
SPEC, or Sentence Pattern Extraction arChitecturte is
a system that automatically extracts frequent sentence
patterns distinguishable for a corpus (a collection of
sentences). Firstly, the system generates ordered non-
repeated combinations from all elements of a sentence.
In every n-element sentence there is k-number of
combination groups, such as that 1 ≥ k ≥ n, where
k represents all k-element combinations being a subset
of n. The number of combinations generated for one
k-element group of combinations is equal to binomial
coefficient, represented in equation 1. In this procedure
the system creates all combinations for all values of k
from the range of {1, ..., n}. Therefore the number of all
combinations is equal to the sum of combinations from
all k-element groups of combinations, like in equation 2.

Next, the system places a wildcard (“*”) between all
non-subsequent elements. SPEC uses all original pat-
terns generated in the above procedure to extract frequent

1equivalent of wh-exclamatives in English [1, 5]; asterisk “*” used
as a marker of disjoint elements

― 868 ― Copyright(C) 2014 The Association for Natural Language Processing.
All Rights Reserved.　　　 　　 　　 　　　 　　　　　　　　　　

Table 1: Some examples from the dataset representing emotive and non-emotive sentences close in content, but differing
in emotional load expressed in the sentence (Romanized Japanese / Translation).

emotive non-emotive

Takasugiru kara ne / ’Cause its just too expensive Kōgaku na tame desu. / Due to high cost.
Nanto ano hito, kekkon suru rashii yo! / Have you heard? She’s getting married! Ano hito ga kekkon suru rashii desu. / They say she is gatting married.
Chō ha ga itee / Oh, how my tooth aches! Ha ga itai / A tooth aches
Sugoku kirei na umi da naaa / Oh, what a beautiful sea! Kirei na umi desu / This is a beautiful sea

patterns appearing in a given corpus and calculates their
weight. The weight can be calculated in several ways.
Two features are important in weight calculation. A
pattern is the more representative for a corpus when,
firstly, the longer the pattern is (length k), and the more
often it appears in the corpus (occurrence O). Therefore
the weight can be calculated by

• awarding length,
• awarding length and occurrence,
• awarding none (normalized weight).

Moreover, the list of frequent patterns generated in the
process of pattern extraction can be further modified.
When two collections of sentences of opposite features
(such as “positive vs. negative”, or in this case “emotive
vs non-emotive”) is compared, a generated list of patterns
will contain patterns that appear uniquely in only one
of the sides (e.g. uniquely positive patterns) or in both
(ambiguous patterns). Therefore the pattern list can be
modified by

• using all patterns,
• erasing all ambiguous patterns,
• erasing only those ambiguous patterns which appear

in the same number in both sides (later called zero
patterns).

Moreover, a list of patterns will contain both the sophis-
ticated patterns (with disjoint elements) as well as more
common n-grams. Therefore the evaluation could be
performed on either

• all patterns,
• only n-grams.

Finally, if the initial collection of sentences was biased
toward one of the sides (e.g., more emotive sentences, or
the sentences were longer, etc.), there will be more pat-
terns of a certain sort. Thus agreeing to a rule of thumb
in classification (fixed threshold above which a new sen-
tence is classified as either emotive or non-emotive)
might be harmful. Therefore assessing the threshold is
another way of optimizing the classifier. All of the above
mentioned modifications are automatically verified in the
process of evaluation to choose the best model. The met-
rics used in evaluation are standard Precision, Recall and
balanced F-score.

4 Evaluation Experiment
4.1 Dataset Preparation
To evaluate the method we used the dataset developed
by Ptaszynski et al. [3] for the needs of evaluating their
affect analysis system ML-Ask. The dataset contains 50
emotive and 41 non-emotive sentences. It was created in
the following way.

The sentences were gathered through an anonymous
survey in which participated thirty people of different age
and social groups. Each of the participants wrote two-
three sentences: one emotive, one non-emotive and one

Table 2: Three examples of sentence preprocessing.

Sentence:
Translation: What a pleasant day it is today!
Preprocessing examples
1. Words: Kyō wa nante kimochi ii hi nanda !
2. POS: N TOP ADV N ADJ N COP EXCL
3.Words+POS: Kyō[N] wa[TOP] nante[ADV] ki-
mochi[N] ii[ADJ] hi[N] nanda[COP] ![EXCL]

free (optional). The participants were asked to make the
emotive and non-emotive sentences as close in content as
possible, so the only difference was in whether a sentence
was loaded with emotion or not. Some examples from the
dataset are represented in Table 1.

In our research the dataset was further preprocessed
in order to verify which kind of sentence representation
would give the best results. We used MeCab2 to prepro-
cess the sentences in the three following ways:

• Tokenization: All words, punctuation marks, etc.
are separated by spaces.

• Parts of speech (POS): Words are replaced with
their representative parts of speech.

• Tokens with POS: Both words and POS informa-
tion is included in one sentence element.

The preprocessing examples are represented in Table 2.

4.2 Experiment Setting
The preprocessing provided three separate datasets for
the experiment. The experiment was performed three
times, one time for each kind of preprocessing to choose
the winner. Each time the dataset was randomly sepa-
rated into ten parts and a 10-fold cross validation was
performed. The results were calculated using the metrics
of Precision, Recall and balanced F-score for the whole
threshold span (1, ..., -1). There were two winning condi-
tions. Firstly, we looked at which modification of the al-
gorithm achieves the top score within the threshold span.
However, an algorithm could achieve the best score for
one certain threshold, while for others it could perform
poorly. Therefore we also wanted to know which version
achieves the highest score for the longest threshold span.
We calculated this as a sum of scores for all thresholds.
This shows whether an algorithm is balanced thorough
the whole threshold span. Finally, we checked the statis-
tical significance of the results. We used paired t-test be-
cause the classification results could represent only one
of two classes (emotive or non-emotive). To chose the
best version of the algorithm we compared the results
achieved by each modification. We also compared the
performance to the state-of-the-art affect analysis system
ML-Ask developed by Ptaszynski et al. [3].

2https://code.google.com/p/mecab/

― 869 ― Copyright(C) 2014 The Association for Natural Language Processing.
All Rights Reserved.　　　 　　 　　 　　　 　　　　　　　　　　

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

-1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1

s
c
o
r
e

threshold

F-score

all_patterns
ngrams

Figure 1: F-score comparison between n-grams and pat-
terns (p = 0.0209) for tokenized dataset.

Table 3: Add caption

ML-Ask
SPEC

tokenized POS token-POS
n-grams patterns n-grams patterns n-grams patterns

Precision 0.80 0.61 0.6 0.68 0.59 0.65 0.64
Recall 0.78 1.00 0.96 0.88 1.00 0.95 0.95
F-score 0.79 0.75 0.74 0.77 0.74 0.77 0.76

4.3 Classification Results and Discussion
We evaluated the version of the algorithm using tokenized
sentences, without any other modifications. The F-score
results were not unequivocal. For higher thresholds pat-
terns achieved higher scores, while for lower thresholds
the results were similar, or n-grams scored higher than
patterns. Interestingly, in all situations where n-grams
achieved visibly better results, the differences in results
were not statistically significant. The scores, when signif-
icant, were significant on 5% level (p<0.05). The high-
est score was F = 0.75 with P = 0.61 and R = 1 for n-
grams, and F = 0.74 with P = 0.6 and R = 0.96 for pat-
terns. The algorithm usually reached its optimal F-score
around 0.73–0.74. An example of F-score comparison
between n-grams and patterns is represented in Figure 1.
When it comes to Precision, there always was at least one
threshold for which n-grams achieved much better Pre-
cision score than patterns. On the other hand, the Pre-
cision scores for patterns were quite balanced, starting
with a high score and slowly decreasing with the thresh-
old span (from 1 to -1), while for n-grams, although they
did achieve better results for one or two thresholds, they
always started from a lower position and for lower thresh-
olds more-less equaled their scores with patterns. Recall
scores were better for patterns within most of the thresh-
old span with results equaling while the threshold lowers.
However, the differences were not evident and rarely sta-
tistically significant.

Next, we verified the performance using sentences pre-
processed to represent POS information (nouns, verbs,
etc.). In theory this type of preprocessing should provide
more generalized patterns than tokens, with smaller num-
ber of patterns but with high occurrence frequency. How-
ever, F-scores for the algorithm with POS-preprocessed

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

-1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1

s
c
o
r
e

threshold

F-score

all_patterns
ngrams

Figure 2: F-score comparison between n-grams and pat-
terns (p = 0.001) for dataset with POS and tokens.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1

s
c
o
r
e

threshold

Precision and Recall for all_patterns

Precission
Recall

Figure 3: Both Precision and Recall with break-even
point (BEP) for the F-score (all patterns) from Figure 2.

sentences revealed less constancy then with previous to-
kenized sentences. For most cases n-grams scored higher
than patterns, but almost none of the results reached sta-
tistical significance. The highest F-scores were F = 0.77
with P = 0.68, and R = 0.88 for n-grams, and F = 0.74
with P = 0.59 and R = 1 for patterns. Similarly to pre-
vious type of preprocessing, the algorithm was usually
optimized at F-score around 0.73–0.74. Slightly lower
scores for patterns in this case suggest that the algorithm
itself works better with less abstracted, but more spe-
cific preprocessing. Results for Precision were also not
consistent. For some versions of the algorithm (e.g., un-
modified, zero pattern deletion) Precision was better for
patterns, while for others (e.g., length awarded) n-grams
scored higher. The highest achieved Precision for pat-
terns was P = 0.72, while for n-grams P = 0.71. Re-
sults for Recall confirm the results for tokenized sen-
tences, namely, patterns achieve significantly higher Re-
call across the board.

Next we used sentenced preprocessed so they included
both tokens and POS information. While in previous
types of preprocessing the elements were more abstracted
(POS-only), the token-POS preprocessing makes the el-
ements more specific, thus this preprocessing method al-

― 870 ― Copyright(C) 2014 The Association for Natural Language Processing.
All Rights Reserved.　　　 　　 　　 　　　 　　　　　　　　　　

lows extracting a larger number, but less frequent pat-
terns. For almost all cases the pattern-based approach
achieved significantly better results, with the difference
between n-grams and patterns being usually very- or ex-
tremely significant (p-value <0.01 or <0.001, respec-
tively). The highest results for F-score were F = 0.76,
with P = 0.64 and R = 0.95. The algorithm was usually
reaching its optimal values around 0.75–0.76. An exam-
ple of F-score comparison between n-grams and patterns
is represented in Figure 2. An additional graph show-
ing both Precision and Recall with the break-even point
(BEP) for this F-score is represented in Figure 3. The
results for Precision were not as straightforward as for F-
score. For many cases patterns scored higher, but not for
the whole threshold span. However, the highest Precision
was achieved by patterns with P = 0.87 for R = 0.50. Re-
call was usually better for patterns with the scores getting
closer a the threshold lowers.

The affect analysis system ML-Ask developed by
Ptaszynski et al. [3] on the same dataset reached the fol-
lowing results. F-score = 0.79, Precision = 0.8 and Recall
= 0.78. The results were generally comparable, however
slightly higher for ML-Ask when it comes to general F-
score and Precision. Recall was always better for SPEC.
However, ML-Ask is a system developed mostly by hand
for several years and is based specifically on linguistic
knowledge concerning emotive function of language. On
the other hand, SPEC is fully automatic and does not need
any particular preparations. Therefore, for example when
performing similar task for other languages, it would be
more efficient to use SPEC rather than ML-Ask, since
SPEC simply learns the patterns from data, while ML-
Ask would require laborious preparation of appropriate
databases.

4.4 Detailed Analysis of Learned Patterns
Within some of the most frequently appearing emotive
patterns there were for example: ! (exclamation mark),
n*yo, cha (emotive verb modification), yo (exclama-
tive sentence ending particle), ga*yo, n*!, n desu, naa
(interjection). Some examples of sentences containing
those patterns are in the examples below (patterns un-
derlined). Interestingly, most of those patterns appear
in handcrafted databases of ML-Ask (however in single
word form). This suggests that it could be possible to
improve ML-Ask performance by extracting additional
patterns with SPEC.

Example 1. Megane, soko ni atta nda yo. (The glasses
were over there!)

Example 2. Uuun, butai ga mienai yo. (Ohh, I cannot
see the stage!)

Example 3. Aaa, onaka ga suita yo. (Ohh, I’m so hun-
gry)

Another advantage of SPEC over ML-Ask is the fact
that the former can mark both emotive and non-emotive
elements in sentence, while ML-Ask is designed to anno-
tate only emotive elements. Some examples of extracted
patterns distinguishable for non-emotive sentences were
for example: desu, wa*desu, mashi ta, masu, te*masu.
All of them are patterns described in linguistic literature
as typically non-emotive, consisting in copulas (desu),
verb endings (masu, and its past form mashi ta). Some
examples of sentences containing those patterns are in the
examples below (patterns underlined).

Example 4. Kōgaku na tame desu. (Due to high cost.)

Example 5. Kirei na umi desu (This is a beautiful sea)

Example 6. Kono hon wa totemo kowai desu. (This book
is very scary.)

Example 7. Kyo wa yuki ga futte imasu. (It is snowing
today)

5 Conclusions and Future Work
We presented a method for automatic extraction of pat-
terns from emotive sentences. We assumed emotive sen-
tences stand out both lexically and grammatically and
performed experiments to verify this assumption. In the
experiments we used a set of emotive and non-emotive
sentences. The patterns extracted from those sentences
were applied to recognize emotionally loaded and non-
emotional sentences. We applied different preprocess-
ing techniques (tokenization, POS, token-POS) to find
the best version of the algorithm. The algorithm usu-
ally reached its optimal F-score around 0.73–0.74 for to-
kenized sentences and 0.75–0.76 for tokens with POS in-
formation. The best results were achieved by patterns
with both tokens and POS and reached balanced F-score
of 76% with Precision equal to 64% and Recall 95%. Pre-
cision for patterns, when compared to n-grams, was bal-
anced, while for n-grams, although sometimes achieving
top scores higher than patterns, the Precision was quickly
decreasing. Recall scores were almost always better for
patterns within most of the threshold span. By the fact
that the results for sentences represented in POS were
lower than the rest, we conclude that the algorithm works
better with less abstracted, and more specific elements.
The results of SPEC and the affect analysis system ML-
Ask were comparable. ML-Ask achieved better Preci-
sion, but lower Recall. However, since SPEC is a fully
automatic method, it would be more efficient to use it
for other languages. Moreover, many of the automati-
cally extracted patterns appear in handcrafted databases
of ML-Ask, which suggests it could be possible to im-
prove ML-Ask performance by extracting additional pat-
terns with SPEC.

References
[1] Kaori Sasai. 2006. The Structure of Modern Japanese

Exclamatory Sentences: On the Structure of the Nanto-Type
Sentence. Studies in the Japanese Language, Vol, 2, No. 1,
pp. 16-31.

[2] Michal Ptaszynski, Rafal Rzepka, Kenji Araki and Yoshio
Momouchi. 2011. Language combinatorics: A sentence
pattern extraction architecture based on combinatorial ex-
plosion. International Journal of Computational Linguistics
(IJCL), Vol. 2, Issue 1, pp. 24-36.

[3] Michal Ptaszynski, Pawel Dybala, Rafal Rzepka and
Kenji Araki. 2009. Affecting Corpora: Experiments with
Automatic Affect Annotation System - A Case Study of
the 2channel Forum -, In Proceedings of The Conference
of the Pacific Association for Computational Linguistics
(PACLING-09), pp. 223-228.

[4] C. E. Shannon. 1948. A Mathematical Theory of Commu-
nication, The Bell System Technical Journal, Vol. 27, pp.
379-423 (623-656), 1948.

[5] C. Potts and F. Schwarz. 2008. Exclamatives and height-
ened emotion: Extracting pragmatic generalizations from
large corpora. Ms., UMass Amherst.

― 871 ― Copyright(C) 2014 The Association for Natural Language Processing.
All Rights Reserved.　　　 　　 　　 　　　 　　　　　　　　　　

