
Token Boundaries or Named Entity Boundaries

Han-Cheol Cho, Naoaki Okazaki, Jun’ichi Tsujii

Tsujii lab., Department of Information Science and Technology, the University of Tokyo

{hccho, okazaki, tsujii}is.s.u-tokyo.ac.jp

1 Introduction

Named Entity Recognition (NER) is a task that

recognizes mentions of specific entities of interest in

text. These mentions could be names of people, or-

ganizations and locations[6], or terminologies in spe-

cialized domains (e.g. medical areas) such as gene

and protein names[2, 5].

NER has been mostly formalized as a sequential

labeling task which labels a sequence of tokens with

a set of pre-defined tags. This formalization means

that input sentence should be tokenized first. While

it is a necessary step, tokenization has not drawn

much attention from researchers probably because

simple tokenization methods usually work well for

NER tasks in general domain.

In biomedical domains, however, such tokenization

methods may produce a token sequence having in-

consistent token boundaries with named entity (NE)

boundaries. The example1 in Figure 1 shows the

parts of sentences tokenized on non-alphanumeric

characters2. GGP (gene or gene product) mentions

are bold-faced.

• … determined that H4Ac16 is present along …
• … , CSN5 binds to oligoubiquitin chains …
• … rat (rminK) or human minK ...

Fig. 1: GGP mention examples in text

In the above examples, the tokenization fails to

produce proper tokens for NER. In such a situa-

1This example is excerpted from the Epigenetics and Post-
translational Modifications event corpus of the BioNLP2011
shared task. The training and development data are used for
evaluation too.

2This method is adopted from a publicly available NER
system, BANNER. http://cbioc.eas.asu.edu/banner/

tion, a NER system may recognize a whole token.

These NEs having incorrect boundaries are problem-

atic since they are mostly used as input to high level

NLP applications such as event extraction.

In this paper, we propose a character-based NER

system based on both character- and token-level fea-

tures. By labeling characters, we can avoid in-

evitable boundary inconsistencies caused by tok-

enization. However, character-based NER has to

make correct predictions on much longer sequences of

characters than token-based NER to correctly recog-

nize NEs of the same length. To tighten up the rela-

tions of the labels within a same token, we adopt the

tokenization method used in the BANNER for fea-

ture generation. Token-level features will give uni-

form feature weights to the characters within in a

same token, and therefore can strengthen them to

have a more likely label sequence.

2 Proposed Method

The proposed method exploits features in both

character-level and token-level. We designed two dif-

ferent feature sets for them. Figure 2 shows the sys-

tem architecture of the proposed system. In the fol-

lowing sections, we explain each component in detail.

2.1 Tokenization Methods

The proposed NER system uses two tokenization

methods. The simplest one is the character splitter

which divides an input into a sequence of characters.

The other one is adopted from the BANNER. The

BANNER’s tokenization method simply divide an

input into tokens based on non-alphanumeric char-

acters. For example, “2,3,7,8-tetrachlorodibenzo-p-

dioxin” will be tokenized into thirteen tokens, “2”,

言語処理学会 第17回年次大会 発表論文集 (2011年3月)
￣￣￣ ̄

Copyright(C) 2011 The Association for Natural Language Processing.
All Rights Reserved.　　　　　 　　 　　　 　　　　　　　　　　

― 778 ―

Tokenizer1 Tokenizer2

Char. Level

Feature Generator

Machine Learner

“Regularization of connexin32 and

connexin43 gene expression by...”

“Regularization of connexin32 and

connexin43 gene expression by...”

Token Level

Feature Generator

Fig. 2: The system architecture

“,”, “3”, “,”, “7”, “,”, “8”, “-”, “tetrachlorodibenzo”,

“-”, “p”, “-”, “dioxin.”

2.2 Feature Design

We designed features in two perspectives: charac-

ter level features and token-level features. We will

explain these features with the example sentence,

“Regularization of connexin32 and connexin43 gene

expression by...,” where the current token position

(ttoken) is “connexin32” and the current character

position (tchar) is the fifth character “e.”

Table 1 shows the character level feature tem-

plates. The LEFT SPACE (or RIGHT SPACE) fea-

ture is true when the left (or right) character of

the current position is a space. Therefore, the

LEFT SPACE and RIGHT SPACE are both false in

this example. Character N-grams (N is from 1 to 8)

are generated within the context window, [tchar-7,

tchar+7]3. We names character N-gram features as

c[begin][end]=[N-gram]. (e.g. c[-1][-1]=n, c[0][0]=e,

..., c[-7][-4]=of co, ..., c[0][7]=exin32 a). There are

also conflated character N-grams where continuous

number parts are replaced with a single zero and non-

alphanumeric character parts are substituted with

the under bar symbol. These feature names begin

3Space is not counted as window size.

Class Description

Space LEFT SPACE, RIGHT SPACE

Char N-grams N = 1-8, W = 7

Dic. N-grams N = 3-5, W = the length

of a matched string

Dic. length the length of matched string

Table 1: Char. level features (N: n-gram size, W:

context window size)

Class Description

Token N-grams N = 1-2, W = 2

Lemma N-grams N = 1-2, W = 2

POS N-grams N = 1-2, W = 2

Lemma & POS N = 1-2,

N-grams W = 1-2

Dic. N-grams N = 1-2, W = the length

of a matched string

Dic. length the length of matched string

Table 2: token-level features

with “cc” instead of “c”. (e.g. cc[0][7]=exin0 a).

For dictionary N-grams, we first apply a dictionary

tagger which performs exact string matching with

two string normalization heuristics4. We used two

dictionaries compiled from a gene database, En-

trezGene5, and a medical term database, UMLS6

Then, N-grams (N is 3 to 5) of the matched string

are generated. For dictionary features, we ab-

stracted the position information into three types,

left(-), current(0) and right(+) positions. (e.g.

D GENE[-][-]=BII, D GENE[-][-]=III, D GENE[-

][0]=III, ... D GENE[+][+]=IIIII). Lexicalized dic-

tionary features are also generated with conflated

lexical features. (e.g. D GENE[-][-]=BII/con,

D GENE[-][-]=III/onn, D GENE[-][0]=III/nne, ...

D GENE[+][+]=IIIII/xin0).

token-level feature templates are shown in Table

2. We use uni-grams and bi-grams for all features

within the [ttoken-2,ttoken+2] context window except

dictionary N-grams which will be generated with the

4One or more numbers are replaced with a single zero and
non-alphanumeric characters are substituted with the unber
bar symbol

5http://www.ncbi.nlm.nih.gov/gene
6http://www.nlm.nih.gov/research/umls/

Copyright(C) 2011 The Association for Natural Language Processing.
All Rights Reserved.　　　　　 　　 　　　 　　　　　　　　　　

― 779 ―

dictionary matched strings.

2.3 Machine Learning

For training our NER system, we used LibLinear7.

We implemented a search algorithm which uses two

previously predicted labels as features. In NER task,

greedy search is known to show comparable perfor-

mance to Viterbi search[4] while it provides great

speed up for both training and tagging.

We trained three models: CHR, TOK and

CHR+TOK. The CHR model, as a baseline sys-

tem, is a character-based NER system which uses

only character-level features. On the other hands,

the TOK model is another baseline system that is a

token-based NER system which uses only token-level

features. The CHR+TOK model incorporates both

character-level and token-level features into a single

model, and performs character-based NER.

We used L2-regularized L2-loss support vector

classification (dual) solver. Each model is trained

with ten regularization parameter C values (0.01, 0.1,

1, 5, 10, 15, 20, 25, 30, 35). The performance com-

parison in Section 3 is done with the best perfor-

mance for each model.

3 Evaluation

For evaluation, we use one of the BioNLP 2011

shared task corpora8, the Epigenetics and Post-

translational Modifications corpus. This corpus pro-

vides comprehensive GGP (gene or gene product) an-

notations on the given domain where the nomencla-

ture is a very example of a community specific nam-

ing convention. Token-based NER often fails to rec-

ognize GGP mentions due to the inconsistent token

boundaries. There are 2,499 GGP mentions in the

development data9, and 147 mentions have inconsis-

tent token boundaries even when a fine-grained tok-

enization method used in the BANNER is applied.

3.1 Performance Evaluation

Table 3 shows the performance of the three models.

As explained in Section 2.3, we applied ten different

7http://www.csie.ntu.edu.tw/ cjlin/liblinear/
8https://sites.google.com/site/bionlpst/
9We use the development data for evaluation since the test

data is currently not available.

Model Recall Prec. F1-score

CHR (c=0.1) 70.91% 86.44% 77.91%

TOK (c=0.1) 73.99% 84.51% 78.65%

CHR+TOK (c=1.0) 74.71% 87.32% 80.53%

NERSuite 75.0% 81.66% 78.24%

Table 3: Evaluation results

regularization values for each model and used the

best scores for the performance comparison.

A baseline model, CHR, achieves a 77.91% F1-

score. The other baseline model, TOK, achieves a

78.65% F1-score. Lastly, the CHR+TOK model im-

proves its performance by a 2.62% from the CHR

model and a 2.84% from the TOK model.

Next, we applied the in-house version of the NER-

Suite10 to investigate how well a token-based NER

system work on this corpus. The NERSuite is a

CRF-based NER system specially tuned for biomed-

ical NER tasks. (Due to the limited time, we could

not test different regularization parameter values for

this system. Therefore, the performance of the NER-

Suite should not be regarded as its best performance

on the test data.)

3.2 Error Analysis

The CHR+TOK model shows higher performance

than its baseline models. To investigate the rea-

son of this improvement, we checked whether the

CHR+TOK model properly recognizes NEs which

cannot be detected by the TOKmodel correctly. The

model successfully recognized named entities such as

sTSHR,H3K4, mOAT1. (NEs are marked in bold-

faced font). However, we found that some names

entities are not recognized at all (e.g. gap1Delta,

mHP1alpha) or recognized by token boundaries

(e.g. PrPsc, hAChE).

The result is promising because many NEs are

correctly recognized which could not be recognized

properly by token-based NER systems. However, the

features used in this research are relatively primi-

tive. We think that it is necessary to design new

10The in-house version of NERSuite uses dictionary fea-
tures while the release version (http://www-tsujii.is.s.u-
tokyo.ac.jp/nersuite/) is not able to use it yet.

Copyright(C) 2011 The Association for Natural Language Processing.
All Rights Reserved.　　　　　 　　 　　　 　　　　　　　　　　

― 780 ―

features which are informative to decide NE bound-

aries within tokens.

4 Related Work

The use of prefixes, suffixes and character n-grams

for NER task can be found in the previous work[3].

However, they use such features to relieve the un-

known word problem in token-based NER. One of

NER systems of LingPipe11 is a character based

HMM model. This model labels characters as our

system, but it only uses character-level features since

incorporating rich features into a generative model is

often impossible.

In Japanese NER task, there is a work[1] which

uses redundant word segmentation analysis informa-

tion to handle word segmentation errors. While their

approach is similar to ours in methodological view-

point, it requires wide-coverage morphological ana-

lyzer(s). Since NER targets various domains, it could

be difficult to prepare such a wide-coverage morpho-

logical analyzer.

5 Conclusion

Tokenization can be a tricky problem for NER in

specialized domains such as biomedical areas. In

this paper, we proposed a character-based NER sys-

tem which can avoid the inconsistent token boundary

problem inherited from tokenization stage. We also

adopted a tokenization method to the feature gener-

ation step. These features could help the characters

belonging to a same token to have a more plausible

label sequence.

参考文献

[1] Masayuki Asahara and Yuji Matsumoto.

Japanese named entity extraction with redun-

dant morphological analysis. In Proceedings of

the NAACL-2003, pp. 8–15, 2003.

[2] Jin-Dong Kim, Tomoko Ohta, Yoshimasa Tsu-

ruoka, Yuka Tateisi, and Nigel Collier. Introduc-

tion to the bio-entity recognition task at jnlpba.

11Pipehttp://alias-i.com/lingpipe/

In Proceedings of International Joint Workshop

on NLPBA ’04, pp. 70–75, 2004.

[3] Dan Klein, , Dan Klein, Joseph Smarr, and

Christopher D. Manning. Named entity recogni-

tion with character-level models. In Proceedings

of CoNLL-2003, 2003.

[4] Lev Ratinov and Dan Roth. Design challenges

and misconceptions in named entity recognition.

In Proceedings of the CoNLL-09, pp. 147–155,

2009.

[5] L Smith et al. Overview of biocreative ii gene

mention recognition. Genome Biology, Vol. 9, No.

Suppl 2, p. S2, 2008.

[6] Erik F. Tjong Kim Sang and Fien De Meul-

der. Introduction to the conll-2003 shared task:

language-independent named entity recognition.

In Proceedings of the 7th Conference on HLT-

NAACL, pp. 142–147, 2003.

Copyright(C) 2011 The Association for Natural Language Processing.
All Rights Reserved.　　　　　 　　 　　　 　　　　　　　　　　

― 781 ―

