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Abstract

Supervised relation extraction systems which
are trained to extract a particular relation type
(source relation) does not accurately extract
a new type of a relation (target relation) for
which it has not been trained. We propose a
method to adapt an existing relation extrac-
tion system to extract new relation types with
minimum supervision. Our proposed method
comprises two stages: learning a lower-
dimensional projection between different re-
lations, and learning a relational classifier for
the target relation type with instance sampling.
We evaluate the proposed method using a
dataset that contains 2000 instances for 20 dif-
ferent relation types. Our experimental results
show that the proposed method achieves a sta-
tistically significant macro-average F -score of
62.77.

1 Introduction

The World Wide Web contains information related
to numerous real-world entities (e.g. persons, lo-
cations, organizations, etc.) interconnected by var-
ious semantic relations. Accurately detecting the se-
mantic relations that exist between two entities is
of paramount importance for information retrieval
(IR). For example, to improve coverage in infor-
mation retrieval, a query about a particular person
can return documents describing the various seman-
tic relations that the person under consideration has
with other related entities.

Recent work on relation extraction has demon-
strated that supervised machine learning algorithms
coupled with intelligent feature engineering provide
state-of-the-art solutions to this problem (Bunescu

and Mooney, 2005; Culotta and Sorensen, 2004;
GuoDong et al., 2005). However, supervised learn-
ing algorithms depend heavily on the availability of
adequate labeled data for the target relation types
that must be extracted. Considering the potentially
numerous semantic relations that exist among enti-
ties on the Web, it is costly to create labeled data
manually for each new relation type that we want to
extract. Instead of annotating a large set of training
data manually for each new relation type, it would
be cost effective if we could somehow adapt an ex-
isting relation extraction system to those new rela-
tion types using a small set of training instances. We
study relation adaptation – how to adapt an existing
relation extraction system that is trained to extract
some specific relation types, to extract new relation
types in a weakly-supervised setting.

We define Relation Adaptation as the problem
of learning a classifier for a target relation type T ,
for which we have a few entity pairs as training in-
stances, given numerous entity pairs for some N
source relation types, S1, . . . ,SN . We use the no-
tation Ω = {S1, . . . ,SN , T } to denote the set of all
relations. A particular relation type from this set is
denoted by R (i.e R ∈ Ω). An entity pair that con-
sists of two entities A and B is denoted as (A,B).
Moreover, we use the notation (A,B) ∈ R to indi-
cate that the relation R exists between two entities
A and B.

2 Method

Given a pair of entities (A, B), the first step is to
express the relation between A and B using some
feature representation. Lexical or syntactic patterns
have been successfully used in numerous natural
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language processing tasks involving relation extrac-
tion such as extracting hypernyms (Hearst, 1992).
Following the previous work on relation extraction
between entities, we use lexical and syntactic pat-
terns extracted from the contexts in which two enti-
ties co-occur to represent the semantic relation that
exists between those entities. First, we download
Web snippets for the AND query of the two entities
A and B. Next, we replace A and B respectively by
two variables X and Y . Finally, we generate sub-
sequence patterns that contain both X and Y . We
extract both lexical and syntactic subsequence pat-
terns using an improved version of the subsequence
pattern mining algorithm proposed by Bollegala et
al. (2010).

Once we express the relations that exist between
entities using lexical and syntactic patterns, we com-
pute the correspondence between patterns that ex-
press different semantic relations. First, we must
identify which patterns are specific to a particular
relation type. We propose a strategy for selecting
relation independent patterns using the entropy of a
pattern over the distribution of entity pairs. The pro-
posed strategy is inspired by the fact that if a pattern
is relation-independent, then its distribution over the
entity pairs tends to become more uniform. How-
ever, if a pattern is relation-specific, then its distri-
bution is concentrated over a small set of entity pairs
that belong to a specific relation type. The entropy of
a pattern increases as its distribution becomes more
uniform.

Figure 1 presents an example in which we plot
the distributions over entity pairs (numeric ids are
assigned to entity pairs and grouped by their re-
lation types for illustrative purposes) for four lex-
ical patterns. From Figure 1, it is apparent that
relation-specific patterns such as Y directed by X
(directed relation), and Y wife X (isMarriedTo re-
lation) are concentrated over a small set of entity
pairs, whereas relation-independent patterns such as
Y from X, and Y for X are distributed over a large set
of entity pairs. Consequently, relation-independent
patterns have higher entropy values than relation-
specific patterns do.

We construct a bipartite graph, G =
(VRS ∪VRI , E) between relation-specific (VRS) and
relation-independent (VRI ) patterns to represent the
intrinsic relationship between those patterns. Each

0 500 1000 1500 2000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Entity pair ids

N
o

rm
a

liz
e

d
 f

re
q

u
e

n
c
y

 

 

Y direct by X (6.45)
Y wife of X (5.30)

Y from X (7.95)
Y for X (8.08)

Figure 1: Distributions of four patterns over entity pairs.
Entropies are shown within brackets.

vertex in VRS corresponds to a relation-specific
pattern, and each vertex in VRI corresponds to
a relation-independent pattern. A vertex in VRS

(corresponding to a relation-specific pattern) is
connected to a vertex in VRI (corresponding to a
relation-independent pattern) by an undirected edge
eij ∈ E. Note that there are no intra-set edges
connecting vertices in VRS and VRI . Moreover,
each edge eij ∈ E is associated with a non-negative
weight mij , that measures the strength of associ-
ation between the corresponding patterns ρi and
ρj . We set mij to the number of different entity
pairs from which both ρi and ρj are extracted.
Edge weights mij are represented collectively by
an edge-weight matrix M of the bipartite graph G.
For simplicity, we use the number of different entity
pairs from which two patterns are extracted as the
edge-weighting measure.

Given as input an edge-weight matrix M for the
bipartite graph G and dimensionality k(< n) of the
latent space, Algorithm 1 returns a projection matrix
U from the original n dimensional pattern space to a
k dimensional latent space. The (i, j) element of the
edge-weight matrix M represents the weight of the
edge that connects a relation-specific pattern ρi to a
relation-independent pattern ρj .

The low-dimensional projection reduces the mis-
match between patterns in source and target relation
types, thereby enabling us to train a classifier for the
target relation type using labeled entity pairs for both
source and target relation types. However, we must

Copyright(C) 2011 The Association for Natural Language Processing. 
All Rights Reserved.　　　　　     　　 　　　   　　　　　　　　　　 

―  771  ―



Algorithm 1 Mapping patterns extracted from
source and target relations to a lower-dimensional
space.
Input: An edge-weight matrix, M ∈ R(n−l)×l of a bi-

partite graph G(VRS ∪ VRI , E), and the number of
clusters (latent dimensions) k.

Output: A projection matrix, U ∈ Rn×k.

1: Compute the affinity matrix, A ∈ Rn×n, of the bi-

partite graph G as A =

[
0 M

M> 0

]
.

2: Compute the Laplacian, L, of the bipartite graph G
as L = I − D−1A, where the diagonal matrix D has
elements Dii =

∑
j Aij , and I ∈ Rn×n is the unit

matrix.
3: Find the eigenvectors corresponding to the k small-

est eigenvalues of L, u1, . . . ,uk, and arrange them
in columns to form the projection matrix U =
[u1, . . . ,uk] ∈ Rn×k.

4: return U

overcome two challenges before we can use the pro-
jected vectors to train a classifier for a target relation
type: loss of information because of imperfect pro-
jections, and imbalance between source and target
relation training datasets. Next, we discuss each
challenge in detail and propose solutions to over-
come them.

First, the criterion for selecting relation-
independent and relation-specific patterns might
not be perfect, thereby introducing some noise to
the created bipartite graph. For that reason, the
computed projection matrix might not be perfect.
To compensate for the loss of information because
of imperfect feature projection, we augment all
the patterns in the original vector xAB ∈ Rn×1 to
the projection UxAB ∈ Rk×1 to construct a new
representation x̃AB × R(n+k)×1 for an entity pair
(A,B) as

x̃AB = [xAB, λUxAB]. (1)

The single scalar parameter λ is useful to balance the
tradeoff between original and projected features in
the new representation. Using a set of heldout data,
we set λ such that the averageL1 norm on the source
relation projection vectors Ux is equal to that of the
original vectors x. This new representation retains
all the features (pattern frequencies) in the original
vector in addition to the projected features, thereby

overcoming any disfluencies attributable to potential
imperfect projections.

Second, in relation adaptation, the number of tar-
get relation training instances (entity pairs) is sig-
nificantly smaller than that of the source relations.
Given such an unbalanced training dataset, most su-
pervised classification algorithms treat the minority
class (target relation) instances as noise or outliers.
Therefore, learning a classifier for a target relation
type which has only a few instances is difficult in
practice. To overcome this problem, we use one-
sided under-sampling which first selects a subset of
the source relation training data and then uses that
subset to train a multi-class classifier. One-sided
under-sampling methods have been used to select a
subset of the majority class in previous work investi-
gating the problem of machine learning with unbal-
anced datasets (Kubat and Matwin, 1997; Provost,
2000).

3 Experiments and Results

To evaluate the proposed method, we select 20 rela-
tion types that have been used frequently for evaluat-
ing relation extraction systems (Agichtein and Gra-
vano, 2000; Banko et al., 2007; Bollegala et al.,
2010) from the YAGO ontology1. For each selected
relation, we randomly selected 100 entity pairs listed
for that relation in the YAGO ontology. Overall, the
dataset contains 2000 (20 relations× 100 instances)
entity pairs. The YAGO ontology has a high level
of manually confirmed accuracy. It is suitable as a
gold standard for evaluating relations between entity
pairs on the Web (Suchanek et al., 2007).

For each relation type R, we randomly allocated
its 100 instances (entity pairs) into three groups: 60
instances as training instances when R is a source
relation, 10 instances as training instances when
R is a target relation, and 30 instances as test in-
stances for R. For each target relation type, there-
fore we have 1140 (19× 60) source relation training
instances and 10 target relation training instances,
which well simulates the problem setting in rela-
tion adaptation. We repeat the above-described data
splitting and report the average results of 5 random
times.

1http://www.mpi-inf.mpg.de/
yago-naga/yago/
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Table 1: Macro-average results for various methods.

Method F-measure
Random 7.24
RS patterns 41.41
RI patterns 51.40
All patterns 47.94
Projected 44.86
Combined (all patterns + projected) 56.99
RS patterns + Sampling 49.78
RI patterns + Sampling 54.83
All patterns + Sampling 57.62
Projected + Sampling 47.61
Jiang (Jiang, 2009) 55.62
Combined + Sampling (PROPOSED) 62.77

From Table 1, we see that the proposed method
has the best macro-average F -measure among all
the different methods. In particular, improve-
ment against the previously proposed state-of-the-
art weakly-supervised relation extraction method
(Jiang, 2009) is statistically significant (paired t-test
with p < 0.05 inferred as significant). The Ran-
dom baseline on this balanced dataset only yields
a very low F -score of 7.25. The RI patterns base-
line that uses only relation-independent patterns out-
performs the RI patterns baseline that uses only
relation-specific patterns. Using all the patterns (i.e.
All patterns baseline) performs slightly worse than
when using only relation-independent patterns. One
reason for this is that the overall performance of the
All patterns baseline is dominated by the numer-
ous relation-specific patterns, which adapt poorly to
target relations. There can be errors in identifying
relation-independent patterns using strategies such
as mutual information, which engender some noise
in the constructed bipartite graph. Consequently, us-
ing only the Projected features is not satisfactory.
However, by augmenting the original features to the
projected features (i.e. Combined baseline), this
problem can be overcome. Next, we evaluate the
effect of the one-sided undersampling on top of the
numerous baselines discussed above. From Table 1,
it is apparent that, by sampling, we consistently im-
prove all the baselines: RS patterns, RI patterns,
All patterns, and Projected. In fact, the proposed
method, which uses augmented feature vectors with
sampling, shows a 6 percent improvement over not
using sampling (i.e. Combined baseline).

4 Conclusion

We proposed and investigated a method to learn a
relational classifier for a target relation using multi-
ple source relations. Our experimental results show
that the proposed method significantly outperforms
10 baselines and a previously proposed weakly-
supervised relation extraction method on a dataset
that contains 2000 entity pairs for 20 different re-
lation types. Both feature projection and sampling
positively contribute to the proposed method. More-
over, the proposed method performs consistently un-
der different parameter settings. In future studies,
we intend to apply the proposed method to other
classification tasks.
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