
Shallow grammar + constrained semantics = deep grammar

Alastair Butler

Japan Society for the Promotion of Science and Center for the

Advancement of Higher Education, Tohoku University, ajb129@hotmail.com

Kei Yoshimoto

Center for the Advancement of Higher Education, Tohoku University

kyoshimoto@mail.tains.tohoku.ac.jp

Abstract

It has hitherto been a task assigned to deep gram-
mars such as Head-driven Phrase Structure Gram-
mar and Lexical Functional Grammar to build up
sufficiently rich meaning representations for sen-
tences, including local argument dependencies, long-
distance dependencies and discourse dependencies.
In this paper, we propose how to obtain appropriate
semantic information from the results of a shallow
grammar, i.e., word-class information and the hier-
archical syntactic structure of the clause, by devel-
oping the dynamic semantics approach to sentence
meanings that constrain what dependencies are pos-
sible.

1 Introduction

Taking languages to be sets of strings, the
purpose of a grammar for a language is to
define which strings are possible expressions
of the language and which strings are not.
In doing this, the grammar will likely tell
us about the word class of substrings identi-
fied as lexical items together with hierarchi-
cal syntactic structures for the valid strings.
Let’s call the ability to do all this shallow
grammar. In addition to this, deep gram-
mars will relate language expressions to in-
formation/interpretations.

Traditionally, deep grammars are hand-
crafted, providing outputs with mean-
ing representations, predicate-argument-
adjunct structures, logical forms, etc. (e.g.,
HPSG LingoErg, Copestake and Flickinger
2000; LFG ParGram, Butt et al 1999;
Core Language Engine CLE, Alshawi 1992).
Wide-coverage deep grammar development
is knowledge extensive and expensive. It
also remains very hard to scale hand-crafted

grammars to unrestricted text. In con-
trast, approaches limited to developing shal-
low grammars have been able to employ
treebank-based grammar induction/parsing
technologies to produce with a low develop-
ment cost, wide-coverage and robust gram-
mars, only with a limited ability to map
strings to meaning representations (see e.g.,
de Marneffe et al 2006).

Getting appropriate meaning representa-
tions is all about providing an adequate in-
put for the independent mechanisms of some
semantics. This poses a research question:
Could we make do with the outputs of a
shallow grammar as the only input to se-
mantics?

To answer this question let’s first take
a step back and ask why we would need
the rich meaning representations of a deep
grammar in the first place. The stan-
dard answer is that deep grammar provides
the constraining guidance semantics needs.
Such careful guidance is required when se-
mantics can evaluate any given structure.
But if semantics were constrained on its own
terms sufficiently, we might be able to get
away with providing only the most basic
structural guidance.

In this paper we develop this idea to show
how it is possible to enforce only appro-
priate dependencies, including long-distance
dependencies, local argument dependencies
and discourse dependencies, from a parse
tree that only presents word-class infor-
mation and the hierarchical structure of
the clause. We demonstrate this with a
semantic system, a generalisation of the

������ �������� ��������������

－ 662 －



Table 1: Binding roles

fresh bindings: local bindings: context bindings:
sources for new scopes in-use scopes of current locality scopes of prior

discourse question existential nominal core arguments non-core localities serving
linked (quantified) subject object (preposition) as antecedents
"d" "q" "e" "h3S" "x3S" "y" "with" "c"

"h3P" "x3P" "near"

"x2S" "behind"

"x2P" "over"

"x1S" "around"

"x1P" ...

Scope Control Theory or SCT of Butler
(2007), which implements an evaluation rou-
tine that takes an assignment (environment)
and a parsed form and returns a predicate
logic translation.

2 Introducing bindings

The key to the approach we provide with
SCT is to limit binding names to fixed roles
(grammatical and discourse) which we sum-
marise in Table 1. This works for English,
with e.g., person and number agreement
coded in the names for subject and nominal
bindings, while different languages will re-
quire a different inventory of binding names.
By coding sensitivity to binding names, we
are able to instrument an expression based
on word class information and information
from the local syntactic context to enforce
requirements on the state of the assignment
with respect to which evaluation is made.
This in turn will either enforce or relax con-
straints on possible language expressions, as
well as contribute to determine the given in-
terpretation for a valid language expression.

As an evaluation proceeds the assign-
ment can change, with given scopes typi-
cally shifting from a binding with one kind
of role to a binding with a different kind
of role, following the illustration of Fig 1.
This shows coordination and subordination
as different dimensions. Looking at the di-
mension of coordination, we see that a scope
is first inaccessible, then it gets used, af-
ter which it becomes available as a context
binding where it can serve as the antecedent
to a pronoun. Looking at the dimension of

subordination, we see that a scope first ap-
pears as a fresh binding, then shifts to a lo-
cal binding where it must serve as the binder
of a main predicate’s argument, and then
shifts to a context binding when there is
garbage collection to end the local binding.

dimension
of coordination

fresh binding

context binding

local binding

context binding

dimension of
subordination

inaccessible

Fig 1: Changes in the binding roles of a
scope with subordination and coordination

3 Predicates

We gain control over bindings and enforce
their roles by making the SCT evaluation
sensitive to what should and should not be
present as a binding. This we can do by
declaring usage conditions for the grammat-
ical dependencies of a predicate with the
form of (1).

(1) r fh lc args atch ext s

This takes six parameters. fh and lc pro-
vide ‘hot patches’ that determine which
binding names the predicate is sensitive to.
The remaining parameters are specific to the
predicate instance: args gives the binding
names for the required (core) arguments of
the predicate; atch, binding names for any
attached (non-core) arguments; and ext,

－ 663 －



binding names that are not entered into the
argument structure of the predicate, but
which nevertheless support corresponding
bindings for the predicate instance. Finally,
s provides the name of the predicate.

In (2) we illustrate three possible forms
for a "smiles" predicate: smiles1, which
supports only a single core "x3S" binding;
smiles2, which supports a core "x3S" bind-
ing plus a "near" attachment; and smiles3,
which supports a core "x3S" binding plus an
additional vacuous "x3S" binding. This also
illustrates determiners a and another as in-
troducing noun phrases that open bindings
with third person agreement and nominal
restrictions. They differ, with another sig-
nalling that it must be under an open "x3S"

binding. The binding name that a deter-
miner opens is determined either by the im-
mediate presence of the infix ‘//’ operator,
in which case an "x3S" binding is opened,
indicating the contribution of word order in
determining a ‘subject’ binding; or the im-
mediate presence of a preposition, with near

contributing the "near" binding name. To-
gether with the hot patches that give "e" as
the possible source for fresh bindings, and
"x3S" and "near" as the possible local bind-
ings, we get the evaluation results of (3).

(2)
let

fh = ["e"]

lc = ["x3S", "near"]

a f = some3S fh 1 "e" 0 [f] nil nil

another f =

some3S fh 1 "e" 0 [f] ["x3S"] nil

boy = r fh lc ["h3S"] nil nil "boy"

near f = f "near"

smiles1 =

r fh lc ["x3S"] nil nil "smiles"

smiles2 =

r fh lc ["x3S"] ["near"] nil "smiles"

smiles3 =

r fh lc ["x3S"] nil ["x3S"] "smiles"

in

a. a boy//smiles1

b. a boy//(smiles1\near (another boy))

c. a boy//(smiles2\near (another boy))

d. a boy//(smiles3\near (another boy))

e. a boy//(another boy//smiles1)

f. a boy//(another boy//smiles2)

g. a boy//(another boy//smiles3)

end

(3)
a. ∃g : (g,(2a))◦ = ((boy(x) ∧ (sing(x) ∧

3rd(x))) ∧ smiles(x))

b. ∀g : (g,(2b))◦ = ∗

c. ∃g : (g,(2c))◦ = ((boy(y) ∧ (sing(y) ∧
3rd(y))) ∧ (smiles +near(y,x) ∧
(boy(x) ∧ (sing(x) ∧ 3rd(x)))))

d. ∀g : (g,(2d))◦ = ∗

e. ∀g : (g,(2e))◦ = ∗

f. ∀g : (g,(2f))◦ = ∗

g. ∃g : (g,(2g))◦ = ((boy(y) ∧ (sing(y) ∧
3rd(y))) ∧ ((boy(x) ∧ (sing(x) ∧
3rd(x))) ∧ smiles(x)))

With (3a) we see that an evaluation with
smiles1 is possible when an "x3S" binding
need be the only open binding; (3b) shows
that smiles1 is impossible when there must
be an additional "near" binding, which
provides an environment able to support
smiles2, (3c), but not smiles3, (3d); and
(3e) shows that smiles1 is impossible with
an extra "x3S" binding, which is able to sup-
port smiles3, (3g), but not smiles2, (3f).
From these results we can conclude that, in
saying the grammatical dependencies that
a predicate supports, we are saying what
the bindings are that it must and must not
get. This is a powerful result, since with
this result we don’t need syntax to guaran-
tee the dependency of what opens a fixed
binding with whatever needs to be bound,
as the only licensed dependencies will be the
dependency links that we will want to see
made.

As a second example, consider (4) and (5),
which illustrate how anaphoric dependen-
cies get enforced with evaluations, and, most
crucially for our current concerns, with the
absence of any coindexing. With (4a/5a) we
see an example with a reflexive that forms
a link with a local (agreeing) binding. With
(4b/5b) we see a pronoun linking with an
antecedent across a conjunct. In (4c/5c) we
see that when a reflexive lacks a local bind-
ing that it can agree with (the occurrence
of you happens to open an "x2S" binding
and not an "x3S" binding) evaluation fails,
while (4d/5d) show how a pronoun is able
to pick up a superordinate antecedent when
the antecedent is of a different locality.

－ 664 －



(4)

let

fh = ["e"]

lc = ["h3S", "x3S", "x2S", "y"]

a f = some3S fh 1 "e" 0 [f] nil nil

boy = r fh lc ["h3S"] nil nil "boy"

teacher =

r fh lc ["h3S"] nil nil "teacher"

likes =

r fh lc ["x3S", "y"] nil nil "likes"

himself = him (T ("x3S", 0)) fh

smiles =

r fh lc ["x3S"] nil nil "smiles"

him = him (T ("c", 0)) fh

thinks =

remb fh lc ["x3S"] nil nil "thinks"

you = you2S

like =

r fh lc ["x2S", "y"] nil nil "like"

in

a. a boy//(likes\\himself)

b. (a boy//smiles) and

(a teacher//(likes\\him))

c. a boy//(

thinks (you//(like\\himself)))

d. a boy//(

thinks (a teacher//(likes\\him)))

end

(5)

a. ∃g : (g,(4a))◦ = ((boy(y) ∧ (sing(y) ∧
3rd(y))) ∧ (likes(y,x) ∧ x = y ∧
masc(x) ∧ (3rd(x) ∧ sing(x))))

b. ∃g : (g,(4b))◦ = (((boy(x) ∧ (sing(x) ∧
3rd(x)))∧smiles(x))∧((teacher(z)∧
(sing(z)∧3rd(z)))∧(likes(z,y)∧y =
x ∧ masc(y) ∧ (3rd(y) ∧ sing(y)))))

c. ∀g : (g,(4c))◦ = ∗

d. ∃g : (g,(4d))◦ = ((boy(z) ∧ (sing(z) ∧
3rd(z))) ∧ thinks(z,((teacher(y) ∧
(sing(y)∧3rd(y)))∧(likes(y,x)∧x =
z ∧ masc(x) ∧ (3rd(x) ∧ sing(x))))))

As a final example, consider (6) and (7),
which illustrate how a long distance depen-
dency can be established with evaluation,
and again without any coindexing. Note
that ? and can act as operators that intro-
duce closures: ? gives rise to the existen-
tial quantifier in the translation that occurs
within the immediate scope of QUEST, and so
which consequently has its value under ques-
tion; while can gives rise to the existential
quantifier that occurs under EXISTS, which
consequently receives an existential reading.

(6)
let

fh = ["q", "e"]

lc = ["h3S", "x3S"]

who =

some3S fh 1 "q" 0 nil nil nil

someone =

some3S fh 1 "e" 0 nil nil ["x3S"]

think =

remb fh lc ["x3S"] nil ["x3S"] "think"

smiles =

r fh lc ["x3S"] nil nil "smiles"

in

(who//can (someone//think smiles)) ?

end

(7) ∃g : (g,(6))◦ = QUEST(∃x((sing(x)∧
3rd(x)) ∧ EXISTS(∃y((sing(y) ∧
3rd(y)) ∧ think(y,smiles(x))))))

4 Summary

To sum up, our results suggest that, from
the inputs of a shallow grammar, the de-
mands of an appropriately constrained se-
mantics are sufficient to capture the range of
grammatical dependencies that deep gram-
mar was thought to be required to enforce.

References

Alshawi, Hiyan, ed. 1992. The Core Lan-
guage Engine. MIT Press.

Butler, Alastair. 2007. Scope control and
grammatical dependencies. Journal of
Logic, Language and Information 16:241–
264.

Butt, Miriam, Tracy Holloway King, Maria-
Eugenia Nino, and Frederique Segond.
1999. A Grammar Writer’s Cookbook .
Stanford: CSLI Publications.

Copestake, Ann and Dan Flickinger. 2000.
An open-source grammar development
environment and broad-coverage english
grammar using HPSG. In Proceedings
of the Second conference on Language
Resources and Evaluation (LREC-2000).
Athens, Greece.

de Marneffe, Marie-Catherine, Bill Mac-
Cartney, and Christopher D. Manning.
2006. Generating typed dependency
parses from phrase structure parses. In
LREC .

－ 665 －




