
Simplicity Bias for Semi-Supervised Parser

Dittaya Wanvarie† Hiroya Takamura†† Manabu Okumura††
†Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology

††Precision and Intelligence Laboratory, Tokyo Institute of Technology

dittaya@lr.pi.titech.ac.jp {takamura,oku}@pi.titech.ac.jp

1 Introduction

Probabilistic context-free grammar (PCFG) is one of
the grammars which can be used to parse natural lan-
guage. PCFG can be straightforwardly extracted from
an annotated corpus. Furthermore, parsing with this
grammar is very fast. However, PCFG contains not
enough information of natural language. For example,
the structure such as “as ... as” cannot be directly
captured.
Another grammar for natural language parsing is

tree grammar, which is a generalization of context-free
grammar (CFG). In fact, a context-free rule is simply a
tree rule with depth 1. Tree grammar can preserve a lot
more information than PCFG, but needs more mem-
ory to be stored. Moreover, parsing with tree grammar
requires longer time than the PCFG parsing.
In both PCFG and tree grammar parsing, there are

several possible parses for a sentence. The likelihood
criterion can be adopted to select one of these candi-
date parses. The criterion can be probabilistic func-
tion or heuristic. Bod[1] proposed that, for tree gram-
mar parsing, the parse with the shortest tree derivation
would be more likely to be correct.
The tree derivation is the number of subtrees, i.e.,

tree grammar rules, which are combined together to
yield the parse. However, there can be several deriva-
tions for a specific parse. The shortest derivation is
the smallest number of subtrees required to build the
parse. According to Zollmann and Sima’an[6], short
derivation of tree grammar, i.e., using large subtrees,
agrees to the principle of simplicity in the sense of sim-
ple derivation. Since small subtrees are included in
other larger subtrees, long derivations, i.e., using small
subtrees, would be selected only in the case that there
is no other shorter derivation.
Instead of parsing with tree grammar from the be-

ginning, we propose to adopt tree grammar parsing to
re-parse the result from PCFG parser. The number of
derivation required in tree grammar parsing together
with the original parser score is used to rerank the n-
best parse outputs from the PCFG parser.
We also consider the learning setting in which lim-

its amount of available labeled data. Since annotation

of data requires much of human time and labor, the
learning should try to acquire necessary information
from unannotated data.
Self-training is one technique which can benefit from

unlabeled data. The idea is to adapt the super-
vised model trained by labeled data to more general
model using unlabeled data. The algorithm behind is
Maximum A Posteriori estimation with Expectation-
Maximization algorithm[2].
With only 2000 sentences as labeled data for train-

ing, the proposed reranker improves the f-score from
62.89% by PCFG to 64.32%. When 38000 additional
unlabeled sentences are provided, the proposed frame-
work achieved the f-score of 65.51% which increases
from 63.70% without the reranking process.

2 Related work

Charniak[2] proposed a reranking parser using approx-
imately one million features. Most of the features have
binary values. For reranker training process, the au-
thor applied the discriminative reranking framework
proposed by Collins[3]. The first-stage parser with-
out any reranking is lexicalized PCFG-based which
achieved 90.37% of f-score. After the reranking, f-score
had been improved to 91.02%.
McClosky et al.[5] proposed a self-training rerank-

ing parser based on Charniak’s reranking parser. The
self-training used the supervised parser to parse un-
labeled data. The model is re-trained with original
labeled data and parsed unlabeled data. By adding
approximately a million sentences of unlabeled data
and re-train in self-training framework, the accuracy
converged to 92.1%[5].

3 Proposed method

PCFG will be used to generate an n-best parse list. Af-
terward, the tree grammar parsing is applied to rerank
the parses in the list. The tree derivation count of each
parse together with the original parse score from PCFG
is used as features to rerank the parse.

1

- 83 -



The tree derivation counting process is the same as
the tree grammar parsing. Goodman[4] has proposed
the PCFG reduction of tree grammar with the short-
est derivation criterion which provides fast dynamic
programming algorithm for tree grammar parsing. In
order to apply the tree grammar parsing to tree deriva-
tion counting, we strictly considers only the tree rules
in the parse output from PCFG. By this method, the
size of tree grammar rules involved in the parsing is
reduced.
The tree derivation score used in this work is the

difference of tree-derivation count from the minimum
tree-derivation count in that parse list. For example, if
the parse list contains parses A, B, C whose derivation
counts are 5, 6, 8, respectively. The minimum deriva-
tion count is 5. Thus, the tree score of each parse would
be 0, 1, and 3, respectively.

4 Experiment

4.1 Data setting

Sections 2 to 21 from conventional Wall Street Jour-
nal corpus are used as training, sections 0, 1, 21 as
development, and section 23 as test data respectively.
All punctuations are removed. Following, WSJ2000,
WSJ10000 represent the settings which use the first
2000 sentences and the first 10000 sentences of the
training set as labeled data respectively. WSJ2-21 rep-
resents the whole training set. Unlabeled data are the
rest of data in the training set.

4.2 training setting

The proposed reranker is evaluated in 2 modes, the su-
pervised and semi-supervised modes. The supervised
setting is intended to measure the performance of the
reranker without any help from unlabeled data. The
semi-supervised setting is explored to judge the im-
provement due to unlabeled data.
We use the same self-training setting as stated in

McClosky et al.[5]. However, this work is intended to
evaluate the ability of the proposed reranker when very
small size of labeled data are available. Only limited
number of labeled data are used, leaving the rest as
unlabeled.

4.3 Selection function

In order to rank a parse using the 2 proposed features,
we proposed the heuristic naiveBest selection, which
will rank parses by the tree score in ascending order.
If there are several parses with the same tree score,
these parses are ranked by their original ranks from
the parser.

WSJ0 WSJ1 WSJ22
parserBest 63.6 63.81 62.59
naiveBest 64.85 64.68 64.11
oracle 78.21 78.28 77.84

Table 1: Selecting function result on WSJ2000

The parserBest selection, which uses only the origi-
nal rank from the PCFG parser, is applied as a base-
line. At the same time, the oracle selection which al-
ways selects the best parse from the list, is the upper
bound reranker.

4.4 Result and discussion

Table 1 shows the f-score of each selection function
in supervised settings. Using only small amount of la-
beled data, WSJ2000, the naive selection obtains 1.21%
accuracy improvement on average from the first-stage
PCFG parser.
In semi-supervised setting with the parserBest

reranker, as shown in Figure 1(a), the accuracy in-
creases approximately 0.57% with WSJ2000+rest in
the first iteration, and continues decreasing through
other next iterations. However, with more labeled
data and less unlabeled data, the accuracy with
WSJ10000+rest does not increase even at the first it-
eration.
The improvement of accuracy with WSJ2000+rest

of the parserBest reranker at the first iteration relies
on recall improvement which is statistically significant
with α=0.05%.
From the first to the fourth iteration, the decreases

of accuracies in WSJ1 and WSJ22 rely on the drop of
precision with α=1%.
In contrast, the accuracy of the parserBest model

when training with WSJ2000 as labeled data and re-
training with smaller, 6000 unlabeled sentences, de-
creases even at the first iteration as shown in Fig-
ure 1(b). The trend of the result is the same as in
the experiment of WSJ10000+rest. The decrease af-
ter adding unlabeled data due to the drop of preci-
sion is significant with α=0.01% in the first iteration,
and with α=1% from the first to the third iteration.
Changes in other iterations are not significant which
indicates the convergence.
Figure 2(a) shows that the accuracy of naiveBest

reranker increases and converges to a constant level.
The improvement relies on the uprise of recall as in the
parserBest reranker, with α=0.01%. The difference of
accuracy in other next iterations is not significant with
α=5%, which also indicates the convergence.
The naiveBest reranker also improves the accuracy

when a small amount of unlabeled data is provided.
The increase is due to an improvement of recall with

- 84 -



(a) WSJ2000+rest (b) WSJ2000+6000

Figure 1: Result with WSJ2000+rest and WSJ2000+6000 on WSJ0, WSJ1, WSJ22 using parserBest selection

(a) WSJ2000+rest

(b) WSJ2000+6000

Figure 2: Result on WSJ0, WSJ1, WSJ22 with
WSJ2000+rest and WSJ2000+6000 using each selec-
tion function

Model f-score

Supervised
WSJ2000 62.89
SVR-RBF 64.24

WSJ2000-naive 64.32

Semi-supervised parserBest 63.70
naiveBest(7th) 65.51

oracle 81.43

Table 2: Result of each selection function with
WSJ2000+rest on WSJ23

α=1%. Figure 2(b) shows that the proposed naiveBest
reranking function also converges with this dataset.
With WSJ2000 and the rest as unlabeled, though

any iterations from the second is not statistically differ-
ent, the seventh iteration of naiveBest reranking parser
achieves the best f-score of 65.96% in average of the
three development sets. Hence, the model of this it-
eration is employed as the final model for naiveBest
reranker. The comparison of result among selection
functions is stated in Table 2.
The first two columns in Table 2 are results of su-

pervised parsers. Applying the naiveBest reranker
improves the accuracy from 62.89% to 64.32%. By
adding unlabeled data with self-training, the proposed
reranker achieved the f-score of 65.51%, which is higher
than all of the supervised parsers in the experiments.
In Figure 1(a), the semi-supervised setting of

parserBest selection improves the accuracy in
WSJ2000+rest only at the first iteration. In other
following iterations, the accuracy continues decreasing.
But in Figure 1(b), the parserBest selection on the

same WSJ2000 with fewer unlabeled data suffers from
a decrease of accuracy even at the first iteration. The
result is the same as one from WSJ10000+rest dataset

- 85 -



parserBest naiveBest
1 76.39 46.36
2 31.54 24.65
3 20.57 14.85
4 13.9 10.5
5 9.92 7.71
6 7.31 5.82
7 5.88 4.55
8 5.01 3.6
9 4.1 3.12

Table 3: Percent of different parses of unlabeled data
over iteration with WSJ2000+rest

in Figure 1(a). Note that the ratio between labeled
and unlabeled data is approximately the same in these
two cases.

A large amount of unlabeled data will adjust prob-
abilities of grammar rules in the first-stage PCFG
parser to more appropriate values using Expectation-
Maximization algorithm. As the first-stage parser con-
tains insufficient information, adding unlabeled data
without further information may lead to the worse ac-
curacy. In contrast, the naiveBest reranker predicted
score by considering both information from PCFG and
from the tree grammar. As a result, the naiveBest
reranker is supposed to be more accurate than the
parserBest to predict the correct parse.

From Figures 2(a) and 2(b), the naiveBest reranker
indicates the convergence over iterations while the
parserBest continues decreasing. The convergence re-
lies on the number of changed sentences during itera-
tions.

According to Table 3, the number of changed train-
ing sentences is reduced over the training iterations.
This reduction indicates the convergence. The reduc-
tion of changed sentences is an effect from Expectation-
maximization algorithm used in self-training setting.
During iterations, the parses which are mostly fit to
the model are chosen, then leading to convergence.

The naiveBest selection rapidly reduces the num-
ber of changed-parsed-unlabeled sentences. One rea-
son is that the same parse always has the same tree-
derivation count in every iteration. In the naive
reranker, only parses with the best tree score would be
considered. On the other hand, the parserBest reranker
considers all parses in a parse list at a time. Therefore,
there is less chance that parserBest method will assign
the same parse to the same rank as assigned in the
previous iteration.

The parserBest selection also signifies a convergence
as the number of different sentences also decreases, but
with slower rate than the naiveBest selection.

5 Conclusion

In this work, the shortest tree derivation count is ap-
plied as a feature to rerank parses from n-best list gen-
erated by a PCFG parser. The heuristic naiveBest is
employed as a selection function. The performance of
the proposed function is evaluated in both supervised
and semi-supervised settings. In superivsed learning,
the proposed reranker achieves higher accuracy than
the parserBest baseline.
In semi-supervised setting, the naiveBest reranking

parser converges faster than the parserBest reranking
parser. Since the naiveBest selection assigns the same
score to the same parse in every iteration, it is more
likely that the same parse will be re-selected in sub-
sequent iterations, thus converging faster. The exper-
iment also proved that the use of unlabeled data is
effective in improving the accuracy of the model. Even
with small amount of unlabeled data, the proposed
reranker can improve the accuracy of the first-stage
PCFG parser.

6 Future work

The proposed naiveBest selection function is only one
of several possible ways to score parses. Other possi-
ble functions such as linear regression, support vector
regression (SVR), etc. can also be used as a selec-
tion function. In this experiment, the support vector
regression has been evaluated. It provided an encour-
aging result. However, these parameters for SVR needs
to be optimized.
The proposed method can also be able to be applied

to any parsers which can produce n-best parse outputs.
However, the current work is only evaluated on PCFG
parser. The state-of-the-art parsers such as Charniak
parser, Collins parser are also able to produce n-best
outputs. There should be further evaluations on these
parsers.

References
[1] R. Bod. Parsing with the shortest derivation. In COLING, pages

69–75, 2000.

[2] E. Charniak and M. Johnson. Coarse-to-fine n-best parsing and
maxent discriminative reranking. In ACL, pages 173–180, 2005.

[3] M. Collins. Discriminative reranking for natural language pars-
ing. In Proc. 17th International Conf. on Machine Learning,
pages 175–182. Morgan Kaufmann, San Francisco, CA, 2000.

[4] J. Goodman. Data oriented parsing, chapter 8, pages 125–146.
CSLI, 1992.

[5] D. McClosky, E. Charniak, and M. Johnson. Effective self-
training for parsing. In HLT-NAACL, pages 152–159. Associ-
ation for Computational Linguistics, 2006.

[6] A. Zollmann and K. Sima’an. A consistent and efficient estimator
for data-oriented parsing. Journal of Automata, Languages and
Combinatorics, 10(2/3):367–388, 2005.

- 86 -


