
Using Dependency Relations as Constraints in HPSG Parsing

Eric Nichols and Yuji Matsumoto
Graduate School of Information Science
Nara Institute of Science and Technology
{eric-n,matsu}@is.naist.jp

Abstract

In this paper, we present a novel chart parsing algorithm,
called the “filtering algorithm”, which was designed for use
in a Head-driven Phrase Structure Grammar (HPSG) anal-
ysis system for Japanese. The filtering algorithm uses in-
formation from dependency trees to constrain the genera-
tion of candidate phrase-structure trees for HPSG analy-
sis which leads to a reduction in parse ambiguity and an
increase in parser effeciency. We present a generalization
of this algorithm that is independent of the order that new
items are added to the chart and to the type of grammar that
is used to create new chart entries. We provide evaluation
of this parser’s accuracy, coverage, and ambiguity reduction
capability by parsing sentences from the Hinoki Treebank,
a treebank of hand-verified Japanese HPSG analyses, and
comparing its results with those of the PET System used in
its construction.

1 Introduction

As advances in both the state-of-the-art in computing power
and the field of linguistics have permitted, deep process-
ing techniques have continued to gain attention in the field
of natural language processing. Syntactic theories such as
Head-driven Phrase Structure Grammar (HPSG) [10] and
Lexical-Functional Grammar (LFG) provide a wealth of lin-
guist information that is useful in high-level tasks such as
machine translation (LOGON: http://www.emmtee.
net/) and ontology acquisition [3].

However, deep processing has its own problematic areas.
One of particular concern is dealing with the large number
of analyses that can be generated by such a system. Often
times, hundreds or even thousands of parses can be gen-
erated for a single sentence. Devising methods of dealing
with this staggering amount of ambiguity has been an ac-
tive are of research. A good overview of these methods
can be found in [12] where the authors classified meth-
ods into reranking and dynamic programming subgroups.
Reranking techniques were characterized with allowing the
parser to generate all possible parse candidates and using
a probabilistic model to identify the desired analysis from
among predetermined number of trees. Dynamic program-
ing techniques, on the other hand, perform similar prob-

abilistic evaluation over all of parses when they are still
stored in a chart or parse forest. There is another class of
techniques not mentioned in the above research: pruning
results or guiding a parser using a Context-Free Grammar
(CFG) [13, 6].

The aforementioned probabilistic models have the dis-
advantage of being limited to a small number of features
or being too computationally demanding to be practical.
On the other hand, CFG-based pruning or parse guidance
is impractical because it requires a grammar to be hand-
constructed or induced, and areas of disagreement between
the CFG and HPSG grammar result in loss of coverage.

In response to this, we propose that information from de-
pendency trees be used to constrain generation of unlikely
trees. By using a robust, statistical dependency analyzer to
filter HPSG parses, we can reduce parse ambiguity while
reducing the computational cost of parsing and maintaining
a high level of coverage.

We proposed a Japanese HPSG parser in [9, 1] that em-
ploys the output from a statistical dependency analyzer
together with a simple, hand-crafted CFG to give a uni-
form analysis for scrambled sentences containing com-
pound verbs. The chart parsing algorithm that was at the
core of this system also showed potential for reducing parse
output ambiguity. In this paper, we further this chart parsing
algorithm, hereafter referred to as the “filtering algorithm”,
to be applicable to any kind of binary chart parsing algo-
rithm and provide concrete evaluation of its effectiveness at
decreasing parse output ambiguity and improving parser ef-
ficiency by comparing its performance to that of the Cheap
parser [4] on the Hinoki Treebank [2].

2 Filtering Algorithm

The filtering algorithm is an extension of a chart parsing
algorithm such as that presented in [5]. However, it is gen-
eralized to be independent of the grammar used to produce
analyses and the algorithm that determines the order that
new items are added to the chart. In essence, the filtering
algorithm is a set of constraints that wraps around the por-
tion of the chart parsing algorithm in charge of making ad-
ditions to the chart, allowing access only when the chart
items under consideration meet criteria determined by the
dependency tree corresponding to the input sentence.

Thus, the object is to only allow new entries to be added
to the chart when they reflect relations that are present in the
dependency analysis of the sentence being parsed. There
are two kinds of relations present in dependency trees:
parent-child relations and relations internal to a dependency
node (also known as a “chunk”). I will now describe how
an algorithm can be constructed that will only add a chart
entry when one of the aforementioned relations is true.

Let us assume the following terminology:

• left edge: the leftmost of two edges being considered
together for combination inn order to produce a new
chart entry

• right edge: the rightmost of these two edges

• chunk(edge): a function which takes an edge as input
and returns an identifier of the dependency node that
edge corresponds to in the dependency structure

• parent(edge): a function which takes an edge as input,
looks up its dependency node using chunk(), and re-
turns an identifier corresponding to the parent of edge’s
node in the dependency, and NULL if edge is in the
root of the dependency tree

• coverage(edge): a function which calculates the range
of input sentence covered by edge

• covers children(edge): a function which returns true
if all children nodes of chunk(edge) are subsumed by
coverage(edge), returns false otherwise

A Cooke Kasami Young (CKY) chart parsing algo-
rithm may have a representation similar to the function
cky scheduler() given in Figure 2. This can be aug-
mented with the filtering algorithm simply by replacing the
chart entry creation function, combine edges(), with fil-
tering edge combiner(). combine edges() is a function
pointer which changes depending on the type of the chart to
point to a function that performs whatever actions are neces-
sary to attempt to add a new entry to a chart. For example,
if the chart used a CFG grammar, then combine edges()
would most likely point to a function like apply cfg rule()
which would check for a CFG rule of the format [new edge
→ left edge right edge] and would add new edge to the
chart upon success.

3 Resources

3.1 Parsing Resources

3.1.1 Chart Parser

We used the PET System [4] as a platform to implement
and test the filtering algorithm. The PET System is a parser
for unification grammars that was designed to facilitate re-
search in efficient parsing techniques and allow for the prac-
tical application of such grammars in research. At its core,

cheap_algorithm:

for all left_edge,right_edge where
(adjacent(left_edge,right_edge))

{
filtering_edge_combiner(left_edge,right_edge)

}

edge_combiner:

unify_with_hpsg_grammar(left_edge,right_edge)

Figure 1: Cheap parser with the filtering algorithm

it uses an adgenda-driven bidirectional chart parser called
Cheap. The pseudocode for Cheap’s parsing algorithm as
augmented by the filtering algorithm is given in Figure 1.
Cheap does not use CFG rules to filter input the the HPSG
unifier. As a result of this, combine edges() directly refer-
ences a function which attempts to unify passive and active
edges with an HPSG grammar and pushes any successful
results directly into the chart.

3.1.2 Dependency Analyzer

Relative CaboCha (rCaboCha) [8, 7] is a Japanese depen-
dency analyzer that uses machine learning techniques to
learn dependencies from training data. Relative CaboCha
can also produce multiple dependency trees as output, rank-
ing them in order of highest probability. We used this fea-
ture to evaluate differences in the filtering algorithm’s using
“n-best” parsers for an input sentence. In our evaluation,
we compared results using 1, 3, and 5 dependency trees for
each input sentence.

3.2 Test Corpus

3.2.1 The Hinoki Treebank

The Hinoki Treebank [2] is a collection of Japanese HPSG
analyses. It was constructed by parsing definition sentences
from an electronic dictionary using the JACY Japanese
grammar [11]. It uses a closed vocabulary of 28,000 words
that were ranked “most familiar” by knowledgable native
speaker judgement, and its parse results are hand-verified,
creating a gold standard of correct analyses that can be used
as a metric of comparison.

4 Evaluation and Results

Evaluation is done in three separate experiments:

1. Parse ambiguity reduction: compare the number of
HPSG analyses produced per sentence

2. Parse efficiency: compare tasks executed, parser run-
time, and memory consumption

Parse Ambiguity (parses per sentence)
Definitions Sentences Baseline 1-Best 3-Best 5-Best
Noun 3477 171.61 11.71 (6.83%) 31.88 (18.58%) 52.55 (30.62%)
Verb 3540 19.58 3.16 (16.12%) 5.37 (27.41%) 7.40 (37.77%)
Verbal Noun 2685 127.06 7.63 (6.01%) 14.03 (11.04%) 28.94 (22.78%)
Total 9702 103.81 7.60 (7.32%) 18.96 (18.26%) 29.54 (28.46%)

Table 1: Comparison of average parse ambiguity

Tasks Executed (average tasks per sentence)
Definitions Sentences Baseline 1-Best 3-Best 5-Best
Noun 3477 32590 2471 (7.58%) 4587 (14.07%) 6924 (21.25%)
Verb 3540 2704 777 (28.74%) 1023 (37.83%) 1228 (45.41%)
Verbal Noun 2685 16288 1461 (8.97%) 2542 (15.61%) 3310 (20.32%)
Total 9702 51582 4709 (9.13%) 8152 (15.80%) 11462 (22.22%)

Parser Runtime (average seconds per sentence)
Definitions Sentences Baseline 1-Best 3-Best 5-Best
Noun 3477 0.52 0.36 (70.86%) 1.69 (328.12%) 4.36 (846.48%)
Verb 3540 0.07 0.08 (107.43%) 0.20 (273.14%) 0.40 (549.88%)
Verbal Noun 2685 0.26 0.20 (76.53%) 0.83 (313.41%) 1.83 (695.42%)
Total 9702 0.28 0.21 (75.23%) 0.91 (320.00%) 2.21 (780.31%)

Memory Usage (average kilobytes per sentence)
Definitions Sentences Baseline 1-Best 3-Best 5-Best
Noun 3477 10563 2328 (22.04%) 3099 (29.34%) 3949 (37.39%)
Verb 3540 1810 1155 (63.78%) 1241 (68.58%) 1317 (72.79%)
Verbal Noun 2685 5627 1711 (30.41%) 2111 (37.52%) 2415 (42.91%)
Total 9702 6003 1729 (28.81%) 2148 (35.77%) 2564 (42.71%)

Table 2: Comparison of parser efficiency

Overall Coverage of Definition Sentences
Parser Settings Sentences Covered Percent Covered Coverage Gain
Baseline 6171 / 6344 97.27% –
1-Best Filtering 5103 / 6344 80.43% +1.59%
3-Best Filtering 5493 / 6344 86.58% +6.15%
5-Best Filtering 5561 / 6344 87.66% +1.08%

Table 3: Comparison of definition sentence coverage

chunk_internal_rel(left_edge,right_edge): filtering_edge_combiner(left_edge,right_edge):

if (adjacent(left_edge, right_edge) && if (chunk_internal_rel(left_edge,right_edge) ||
(chunk(left_edge) == chunk(right_edge))) (parent_child_rel(left_edge,right_edge) &&

return true covers_children(left_edge)))
else

return false cky_scheduler:

parent_child_rel(left_edge,right_edge): for all <left_edge,right_edge> where
(adjacent(left_edge,right_edge))

if (parent(left_edge) == chunk(right_edge)) {
return true combine_edges(left_edge,right_edge)

else }
return false

Figure 2: Pseudocode for the filtering algorithm

3. Coverage: compare parse results to gold standard

Testing was done using treebank profiles of noun, verb,
and verbal noun definition sentences from the Hinoki Tree-
bank. A total of 9,702 test sentences were used in evalu-
ating performance. Of those sentences, 6,344 have human-
verified results and were used in evaluating coverage. There
sentences were parsed once with an unmodified Cheap to
create a baseline for comparison. The treebank was then
parsed again with Cheap using the filtering algorithm with
1-best, 3-best, and 5-best dependency tree input. All testing
was done on a computer with a 1.8 Ghz Pentium M proces-
sor and 1.5 gigabytes of RAM. Cheap was run with a limit
of 1.5 gigabytes of memory and 100,000 active edges for
each input sentence.

5 Discussion

There is a more in-depth discussion of these experiments
and their results in [9].

5.1 Parse Ambiguity Reduction

Results are given in Table 1. The filtering algorithm showed
itself to be quite effective at reducing parse ambiguity. It re-
duced the baseline average of 103.81 analyses per sentence
to a low of 7.55 analyses using 1-best filtering.

5.2 Parse Efficiency

Results are given in Table 2. The experiments for Tasks
Executed and Memory Usage provide fair evidence of the
increase in parsing efficiency that the filtering algorithm can
provide. On average, memory consumption is reduced from
an average of 6,004 kilobytes per sentence to between 28.38
and 42.71 percent. The average number of tasks executed
per sentence is likewise reduced from 51,582 tasks to from
9.13 to 22.22 percent of that figure.

Runtime efficiency is the only area where favorable re-
sults are not had. 1-best filtering shows a small improve-
ment in speed over the baseline, however, 3-best rCaboCha
takes over three times longer than the baseline per sentence,
and the runtime of the five-best approaches a magnitude of
eight higher. This is most likely due to the current imple-
mentation’s reliance on the CaboCha library to read multi-
ple dependency trees from file. In doing so, it must create a
parser and reconstruct all of the internal data items associ-
ated with it. Switching to an I/O format such as XML that
is supported by both rCaboCha and Cheap could lead to a
significant speedup.

5.3 Coverage

Results are given in Table 3, As expected, the baseline (i.e.
the unmodified Cheap parser) has the highest coverage. In
theory, the baseline should achieve a perfect coverage of the

treebank because the treebank was produced using Cheap
with the same settings as used in this experiment. The small
loss in coverage can be attributed to differences in lexicons.
The authors did not have access to the same version of the
tokenizer’s lexicon at the time of testing. This resulted in
different segmentation of some compound nouns and ver-
bal inflections, leading to misparses for a small number of
sentences. Of the dependency parsers, the best performance
was 5-best filtering with almost 88% coverage. However,
even using only the best parse, rCaboCha still achieves an
overall coverage of over 80%. Is is also significant to note
that the biggest increase in coverage occurs in moving from
1-best to 3-best filtering; moving to 5-best filtering offers
comparably little gain.

6 Conclusion

The filtering parser appears to be effective at reducing parse
ambiguity and increasing efficiency while maintaining a
high level of coverage. It is interesting to observe that the
benefits for using filtering based on n-best results from de-
pendency analysis seems to peak at three results. The over-
all level of coverage as well as savings in CPU usage and
memory consumption for 3-best should make this approach
attractive for applications that need to reduce the amount
of ambiguity in deep parsing results before they are usable.
Future research will focus on improving the current imple-
mentation to address the speed issues encountered when us-
ing more than one dependency tree and investigating the ap-
plication of this technique in languages beyond Japanese.

References
[1] A. Azuma, E. Nichols, Y. Morimoto, and Y. Matsumoto. Integration of statistical dependency parsing and

constraint based grammar for japanese sentence analysis. In 2004-NL-159, volume 1, pages 131–138, Tokyo,
2004. (in Japanese).

[2] F. Bond, S. Fujita, C. Hashimoto, K. Kasahara, S. Nariyama, E. Nichols, A. Ohtani, T. Tanaka, and S. Amano.
The Hinoki treebank: A treebank for text understanding. In Proceedings of the First International Joint Confer-
ence on Natural Language Processing (IJCNLP-04), pages 554–559, Hainan Island, 2004.

[3] F. Bond, E. Nichols, S. Fujita, and T. Tanaka. Acquiring an ontology for a fundamental vocabulary. pages
1319–1325, Geneva, 2004.

[4] U. Callmeier. Preprocessing and encoding techniques in PET. In S. Oepen, D. Flickinger, J. Tsujii, and H. Uszko-
reit, editors, Collabarative Language Engineering, chapter 6, pages 127–143. CSLI Publications, Stanford, 2002.

[5] M. Kay. Algorithm schemata and data structures in syntactic processing. Technical report, Xerox Corporation,
1980.

[6] B. Kiefer, H.-U. Krieger, and M. Siegel. An hpsg-to-cfg approximation of japanese. 2000.

[7] T. Kudo and Y. Matsumoto. Japanese dependency analyisis using cascaded chunking. Taipei, 2002.

[8] T. Kudo and Y. Matsumoto. Japanese dependency parsing using relative preference of dependency. 2004. (in
Japanese).

[9] E. Nichols. The role of dependency trees in hpsg parse filtering. Master’s thesis, Nara Institute of Science and
Technology, 2005. (under consideration).

[10] C. J. Pollard and I. A. Sag. Head-Driven Phrase Structure Grammar. University of Chicago Press, Chicago,
1994.

[11] M. Siegel and E. M. Bender. Efficient deep processing of Japanese. In Procedings of the 3rd Workshop on Asian
Language Resources and International Standardization at the 19th International Conference on Computational
Linguistics, Taipei, 2002.

[12] B. Taskar, D. Klein, M. Collins, D. Koller, and C. Manning. Max-margin parsing. Barcelona, 2004.

[13] Y. Tsuroka, Y. Miyao, and J. Tsujii. Towards effecient probabilistic hpsg parsing. Sanya, 2004.

