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Abstract

In this paper we present a quantitative and qualitative
analysis of annotation in the Hinoki treebank of Japanese,
and investigate a method of speeding annotation by using
part-of-speech tags. The Hinoki treebank is a Redwoods-
style treebank of Japanese dictionary definition sentences.
5,000 sentences are annotated by three different annota-
tors and the agreement evaluated. An average agreement of
65.4% was found using strict agreement, and 83.5% using
labeled precision. Exploiting POS tags allowed the annota-
tors to choose the best parse with 19.5% fewer decisions.

1 Introduction

It is important for an annotated corpus that the mark-up
is both correct and, in cases were variant analyses could
be considered correct, consistent. Considerable research in
the field of word sense disambiguation has concentrated on
showing that the annotation of word senses can be done
correctly and consistently, with the normal measure being
inter-annotator agreement. Surprisingly, almost no such
studies have been carried out for syntactic annotation, with
the notable exceptions of (Brants et al., 2003, p 82) for the
German NeGra Corpus and (Civit et al., 2003) for the Span-
ish Cast3LB corpus. Even such valuable and widely used
corpora as the Penn TreeBank have not been verified in this
way.

We are constructing the Hinoki treebank as part of a
larger project in psycho-linguistics and computational lin-
guistics ultimately aimed at natural language understanding
(Bond et al., 2004). In order to build the initial syntactic and
semantic models, we are treebanking the dictionary defini-
tion sentences.

We adopted a semi-automated method in building a tree-
bank, where annotators are aided by POS taggers or parsers.
There were three main reasons. The first was that we
wanted to develop a precise broad-coverage grammar in
tandem with the treebank, as part of our research into natu-
ral language understanding. Treebanking the output of the
parser allows us to immediately identify problems in the
grammar, and improving the grammar directly improves the
quality of the treebank in a mutually beneficial feedback
loop. The second reason is that we wanted to annotate to
a high level of detail, marking not only dependency and
constituent structure but also detailed semantic relations.
By using a Japanese grammar (JACY: (Siegel and Bender,
2002)) based on a monostratal theory of grammar (HPSG:
(Pollard and Sag, 1994)) we could simultaneously annotate
syntactic and semantic structure without overburdening the
annotator. The third reason was that we expected the use of
the grammar as a base to aid in enforcing consistency.

2 The Hinoki Treebank
The Hinoki treebank currently consists of 16,000 annotated
dictionary definition sentences. The dictionary is the Lex-
eed Semantic Database of Japanese (Kasahara et al., 2004),
which consists of all words with a familiarity greater than
or equal to five on a scale of one to seven. This gives 28,000
words, divided into 46,347 different senses. Each sense
has a definition sentence and example sentence written us-
ing only these 28,000 familiar words (and some function
words). Many senses have more than one sentence in the
definition: there are 81,000 defining sentences in all.

For evaluation of the treebanking we selected 5,000 of
the sentences that could be parsed, and divided them into
five 1,000 sentence sets (A-E). Definition sentences tend
to vary widely in form depending on the part of speech of
the word being defined — each set was constructed with
roughly the same distribution of defined words, as well as
having roughly the same length (the average was 9.9, rang-
ing from 9.5–10.4).

A (simplified) example of an entry (Sense 2 of
�������

kāten “curtain: any barrier to communication or vision”),
and a syntactic view of its parse is given in Figure 1(a). The
full parse is an HPSG sign, containing both syntactic and
semantic information. A view of the semantic information
is given in Figure 1(b)1.
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aru monogoto o kakusu mono
a certain stuff ACC hide thing

(a) Syntactic View

〈h0, x2{h0 : prpstn rel(h5)
h1 : aru(e1, x1, u0) “a certain”
h1 : monogoto(x1) “stuff”
h2 : u def(x1, h1, h6)
h5 : kakusu(e2, x2, x1) “hide”
h3 : mono(x2) “thing”
h4 : u def(x2, h3, h7)}〉

(b) Semantic View
Curtain2: “a thing that hides something”

Figure 1: The Definition of
�������

2 kāten “curtain”

1The semantic representation used is Minimal Recursion Se-
mantics (Copestake et al., 1999). The figure shown here hides
some of the detail of the underspecified scope.



3 Treebanking Using Discriminants

Selection among analyses in our set-up is done through a
choice of elementary discriminants, basic and mostly in-
dependent contrasts between parses. These are (relatively)
easy to judge by annotators. The system selects features
that distinguish between different parses, and the annota-
tor selects or rejects the features until only one parse is
left. The system we used for treebanking was the [incr
tsdb()] profiling environment (Oepen and Carroll, 2000).
The number of decisions for each sentence is proportional
to the log of the number of parses. The number of deci-
sions required depends on the ambiguity of the parser and
the length of the input. For Hinoki, on average, the number
of decisions presented to the annotator was 27.5. However,
the average number of decisions needed to disambiguate
the sentences was only 2.6, plus an additional decision to
accept or reject the selected parses2. In general, even a sen-
tence with 100 parses requires only around 5 decisions and
1,000 parses only around 7 decisions (Figure 4).

The primary data stored in the treebank is the derivation
tree: the series of rules and lexical items the parser used to
construct the parse. This, along with the grammar, can be
combined to rebuild the complete HPSG sign. The annota-
tors task is to select the appropriate derivation tree or trees.
Nodes in the trees indicate applied rules, simplified lexical
types or words. Each symbol below word is POS from a
tagger output. We will use it as an example to explain the
annotation process.

This example has two major sources of ambiguity. One
is lexical: aru “a certain/have/be” is ambiguous between a
reading as a determiner “a certain” (det-lex) and its use
as a verb of possession “have” (aru-verb-lex). If it
is a verb, this gives further structural ambiguity. In addi-
tion to the different parses arising from the different parts
of speech, there is further ambiguity in the relative clause
(gapped or non-gapped).These trees are divided into two
groups, which can be discriminated only by simple POS
produced by a tagger. Parser outputs both readings because
it only use word segmentation from a tagger and does not
use POS information. Relaible POS tags can reduce the
number of trees, as described in the next section.

Overall, this five-word sentence has 6 parses. The an-
notator does not have to examine every tree but is instead
presented with a range of 9 discriminants, as shown in Fig-
ure 2, each local to some segment of the utterance (word
or phrase) and thus presenting a contrast that can be judged
in isolation. Here the first column shows deduced status of
discriminants (typically toggling one discriminant will rule
out others), the second actual decisions, the third the dis-
criminating rule or lexical type, the fourth the constituent
spanned (with a marker showing segmentation of daugh-
ters, where it is unambiguous), and the fifth the parse trees
having the rule or lexical type.

After selecting a discriminant, the system recalculates
the discriminant set. Those discriminants which can be
deduced to be incompatible with the decisions are marked
with ‘−’, and this information is recorded. The tool then
presents to the annotator only those discriminants which
still select between the remaining parses, marked with ‘?’.

2This average is over all sentences, even non-ambiguous ones,
which only require a decision as to whether to accept or reject.

In this case the desired parse can be selected with a
minimum of two decisions. If the first decision is that���

aru is a determiner (det-lex), it eliminates four
parses, leaving only three discriminants to be decided on
in the second round of decisions. Selecting � mono
“thing” as the gapped subject of ��� kakusu “hide”
(rel-cl-sbj-gap) resolves the parse forest to the sin-
gle correct derivation tree.

Finally, the annotator has the option of rejecting all the
parses presented, if none had the correct syntax and seman-
tics. This decision has to be made even for sentences with
a unique parse.

4 Using POS Information to Blaze the Trees

Lexeed is already part-of-speech tagged so we investigated
exploiting this information to reduce the number of deci-
sions the annotators had to make. More generally, there are
many large corpora with a subset of the information we de-
sire already available. This can be used to blaze trees in the
parse forest: that is to select or reject certain discriminants
based on existing information.

Because other sources of information may not be entirely
reliable, or the granularity of the information may be dif-
ferent from the granularity in our treebank, we felt it was
important that the blazes be defeasible. The annotator can
always reject the blazed decisions and retag the sentence.

In [incr tsdb()], it is currently possible to blaze using
POS information. The criterion for the blazing depend on
both the grammar used to make the treebank and the POS
set. They are therefore kept in a separate file. The system
matches the tagged POS against the grammars lexical hi-
erarchy, using a one-to-many mapping of parts of speech
to types of the grammar combined with subsumption-based
comparison. It is thus possible to write very general rules.
Blazes can be positive to accept a discriminant or negative
to reject it. The blaze markers are defined to be a POS tag,
and then a list of lexical types and a score. The polarity of
the score determines the accept/reject value. The numerical
value allows the use of a threshold, so that only those mark-
ers whose absolute value is greater than a threshold will be
used. The threshold is currently set to zero: all blaze mark-
ers are used.

Hinoki uses 13 blaze markers at present, a simplified
representation of them are shown in Figure 33. E.g.
if ("verb-aux" v-stem-lex -1.0) was a blaze
marker, then any sentence with a verb that has two non-
auxiliary entries (e.g. hiraku/aku vt and vi) would be elim-
inated. granularity available for Lexeed.

For the example shown in Figure 2, the blaze markers
use the POS tagging of the determiner

���
aru to mark it

as det-lex. This eliminates four parses and six discrim-
inants leaving only three to be presented to the annotator.
On average, marking blazes reduced the average number of
blazes presented per sentence from 27.5 to 23.8 (a reduction
of 15.6%). The reduction in the number of discriminants
presented is shown in Figure 4.

3The actual POS markers used are from the ChaSen POS tagset
(http://chasen.aist-nara.ac.jp).
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rules /

lexical types
subtrees /

lexical items
parse
trees

? ? rel-cl-sbj-gap ���������
	���
�� 2,4,6
? ? rel-clause ����������	���
�� 1,3,5
- ? rel-cl-sbj-gap ����
���� 3,4
- ? rel-clause ����
���� 5,6
+ ? hd-specifier ����
���� 1,2
? ? subj-zpro 	�� 2,4,6
- ? subj-zpro ��� 5,6
- ? aru-verb-lex ��� 3–6
+ + det-lex ��� 1,2

+: positive decision -: negative decision
?: indeterminate / unknown

Figure 2: Discriminants (marked after one is selected). D :
deduced decisions, A : actual decisions

(verb-aux v-stem-lex −1.0)
(verb-main aspect-stem-lex −1.0)
(noun verb-stem-lex −1.0)
(adnominal noun mod-lex-l 0.9

det-lex 0.9)
(conjunction n conj-p-lex 0.9

v-coord-end-lex 0.9)

Figure 3: Some Blaze Markers used in Hinoki

5 Measuring Inter-Annotator Agreement

Lacking a task-oriented evaluation scenario at this point,
inter-annotator agreement is our core measure of annotation
consistency in Hinoki.

α – β β – γ γ – α Av.
Parse Agreement 63.9 68.2 64.2 65.4
Parse Disagreement 17.5 19.2 17.9 18.2
Reject Agreement 4.8 3.0 4.1 4.0
Reject Disagreement 13.7 9.5 13.8 12.4

Table 1: Exact Match Inter-annotator Agreement

Table 1 quantifies inter-annotator agreement in terms of
the harshest possible measure, the proportion of sentences
for which two annotators selected the exact same parse or
both decided to reject all available parses. Each set was
annotated by three annotators (α, β, γ). They were all na-
tive speakers of Japanese without linguistic training. The
average annotation speed was 50 sentences an hour.

The Parse Agreement figures (65.4%) in Table 1 are
those sentences where both annotators chose one or more
parses, and they showed some agreement. This figure is
substantially above the published figure of 52% for NeGra
Parse Disagreement is where both chose parses, but there
was no agreement. Reject Agreement shows the propor-
tion of sentences for which both annotators found no suit-
able analysis. Finally Reject Disagreement is those cases
were one annotator found no suitable parses, but one se-
lected one or more. The striking contrast between the com-
paratively high exact match ratios (over a random choice
baseline of below seven per cent; κ = 0.628) and the low
agreement between annotators on which structures to reject
completely suggests that the latter type of decision requires
better guidelines, ideally tests than can be operationalized.

To obtain both a more fine-grained measure and also be
able to compare to related work, we computed a labeled

Test α – β β – γ γ – α Av.
Set # F # F # F F
A 507 96.03 516 96.22 481 96.24 96.19
B 505 96.79 551 96.40 511 96.57 96.58
C 489 95.82 517 95.15 477 95.42 95.46
D 454 96.83 477 96.86 447 97.40 97.06
E 480 95.15 497 96.81 484 96.57 96.51

2435 96.32 2558 96.28 2400 96.47 96.36

Table 2: Inter-Annotator Agreement as Mutual Labeled
Precision F-Score

precision f-score over derivation trees. Note that our inven-
tory of labels is large, as they correspond in granularity to
structures of the grammar: close to 1,000 lexical and 120
phrase types. As there is no ‘gold’ standard in contrasting
two annotations, our labeled constituent measure F is the
harmonic mean of standard labeled precision P applied in
both ‘directions’: for a pair of annotators α and β, F is de-
fined as:

F =
2P (α, β)P (β, α)

P (α, β) + P (β, α)

As found in the discussion of exact match inter-annotator
agreement over the entire treebank, there are two funda-
mentally distinct types of decisions made by annotators,
viz. (a) elimination of unwanted ambiguity and (b) the
choice of keeping at least one analysis or rejecting the en-
tire item. Of these, only (b) applies to items that are as-
signed only one parse by the grammar, hence we omit un-
ambiguous items from our labeled precision measures (a
little more than twenty per cent of the total) to exclude triv-
ial agreement from the comparison. In the same spirit, to
eliminate noise hidden in pairs of items where one or both
annotators opted for multiple valid parses, we further re-
duced the comparison set to those pairs where both anno-
tators opted for exactly one active parse. Intersecting both
conditions for pairs of annotators leaves us with subsets of
around 2,500 sentences each, for which we record F values
ranging from 95.1 to 97.4, see Table 2. When broken down
by pairs of annotators and sets of 1,000 items each, which
have been annotated in strict sequential order, F scores in
Table 2 confirm that: (a) inter-annotator agreement is sta-
ble, all three annotators appear to have performed equally
(well). (b) with growing experience, there is a slight in-
crease in F scores over time, particularly when taking into
account that set E exhibits a noticeably higher average am-
biguity rate (1208 parses per item) than set D (820 average
parses). (c) Hinoki inter-annotator agreement compares fa-
vorably to results reported for NeGra and Cast3LB tree-
banks, both of which used manual mark-up seeded from
automated POS tagging and chunking. Compared to the
92.43 per cent labeled F score reported by (Brants, 2000),
Hinoki achieves an ‘error’ (i.e. disagreement) rate of less
than half, even though our structures are richer in informa-
tion and should probably be contrasted with the ‘edge label’
F score for NeGra, which is 88.53 per cent. At the same
time, it is unknown to what extent results are influenced
by differences in text genre, i.e. average sentence length of
our dictionary definitions is noticeably shorter than for the
NeGra newspaper corpus.

In addition, our measure is computed only over a sub-
set of the corpus If we recalculate over all 5,000 sentences,
including rejected sentences and those with no ambiguity
then the the average F measure is 83.5, slightly worse than



the score for NeGra. However, the annotation process itself
identifies which the problematic sentences are, and how to
improve the agreement: improve the grammar so that fewer
sentences need to be rejected and then update the annota-
tion.

5.1 The Effects of Blazing

Table 3 shows the number of decisions per annotator, in-
cluding revisions, and the number of decisions that can be
done automatically by the part-of-speech blazed markers.
The test sets where the annotators used the blazes are shown
underlined. The final decision to accept or reject the parses
was not included, as it must be made for every sentence.

Test Annotator Decisions Blazed
Set α β γ Decisions
A 2,659 2,606 3,045 416
B 2,848 2,939 2,253 451
C 1,930 2,487 2,882 468
D 2,254 2,157 2,347 397
E 1,769 2,278 1,811 412

Table 3: Number of Decisions Required

The blazed test sets require far fewer annotator decisions.
In order to evaluate the effect of the blazes, we compared
the average number of decisions per sentence for test-sets
B,C, and D, where some annotators used blazed sets and
some did not. The average number of decisions went from
2.63 to 2.11, a substantial reduction of 19.5%. We did not
include A and E, as there was variation in difficulty between
test-sets, and it is well known that annotators improve (at
least in speed of annotation) over time. The number of de-
cisions against the number of parses is show in Figure 4,
both with and without the blazes.
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Figure 4: Number of Decisions versus Number of Parses

6 Discussion

Annotators found the rejections the most time consuming.
If a parse was eliminated, they often redid the decision pro-
cess several times to be sure they had not eliminate the cor-
rect parse in error, which was very time consuming. This
shows that the most important consideration for the success
of treebanking in this manner is the quality of the gram-
mar. Fortunately, treebanking offers direct feedback to the
grammar developers. Rejected sentences identify which ar-
eas need to be improved, and that the treebank is dynamic,

so it can go forward with the grammar. This is a notable im-
provement over semi-automatically constructed grammars,
such as the Penn Treebank, where many inconsistencies
remain (around 4,500 types estimated by (Dickinson and
Meurers, 2003)) and the treebank does not allow them to be
identified automatically.

7 Conclusions
We conducted an experiment to measure inter-annotator
agreement for thew Hinoki corpus. Sentence agreement
was an unparalleled 65.4%. This method allows the tree-
bank to be improved as its underlying grammar improves.
We also presented a method to speed up the tagging by ex-
ploiting existing part-of-speech tags. This led to a decrease
in the number of annotation decisions of 19.5%.
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